AugustLight's picture
Update app.py
a670399 verified
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
model = None
def load_model():
global model
try:
print("Начинаем загрузку модели из Hub...")
model_path = hf_hub_download(
repo_id="AugustLight/LLight-3.2-3B-Instruct",
filename="Llight.Q8_0.gguf",
repo_type="model"
)
print(f"Модель загружена в: {model_path}")
model = Llama(
model_path=model_path,
n_ctx=2048,
n_threads=4,
n_batch=512
)
print("Модель успешно инициализирована!")
return model
except Exception as e:
print(f"Подробная ошибка при загрузке модели: {str(e)}")
raise e
def respond(message, history, system_message, max_new_tokens, temperature, top_p):
try:
global model
if model is None:
model = load_model()
context = f"{system_message}\n\n"
for user_msg, assistant_msg in history:
context += f"User: {user_msg}\nAssistant: {assistant_msg}\n"
context += f"User: {message}\nAssistant: "
print(f"Генерируем ответ для контекста длиной {len(context)} символов")
response_text = ""
# Используем генерацию с потоком
for response in model(
prompt=context,
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
stop=["User:", "\n\n", "<|endoftext|>"],
echo=False,
stream=True
):
chunk = response['choices'][0]['text']
response_text += chunk
print(f"Промежуточный ответ: {chunk}")
yield response_text # Отправляем накопленный текст
print("Ответ сгенерирован полностью.")
except Exception as e:
error_msg = f"Произошла ошибка: {str(e)}"
print(error_msg)
yield error_msg
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Сообщение")
with gr.Accordion("Параметры", open=False):
system = gr.Textbox(
value="Ты дружелюбный и полезный ассистент. Отвечай обдуманно и по делу.",
label="System message"
)
max_new_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.3,
step=0.1,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
)
clear = gr.Button("Очистить")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history, system_message, max_new_tokens, temperature, top_p):
message = history[-1][0]
for response_text in respond(message, history[:-1], system_message, max_new_tokens, temperature, top_p):
history[-1][1] = response_text
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, system, max_new_tokens, temperature, top_p], chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
try:
print("Инициализация приложения...")
model = load_model()
print("Модель загружена успешно при старте")
except Exception as e:
print(f"Ошибка при инициализации: {str(e)}")
demo.launch()