Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import os | |
from huggingface_hub import snapshot_download, login | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
CONTACT_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
SUB_TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.envs import API | |
from src.leaderboard.load_results import load_data | |
def restart_space(): | |
API.restart_space(repo_id="Auto-Arena/Leaderboard") | |
csv_path = f"./src/results/auto-arena-llms-results-20241007.csv" | |
csv_path_chinese = f"./src/results/auto-arena-llms-results-chinese-20240531.csv" | |
df_results = load_data(csv_path).sort_values(by="Rank") | |
df_results_chinese = load_data(csv_path_chinese) | |
all_columns = ['Rank', 'Model', 'From', 'Open?', 'Params(B)', 'Cost', 'Score'] | |
show_columns = ['Rank', 'Model', 'From', 'Open?', 'Params(B)', 'Cost', 'Score'] | |
TYPES = ['number', 'markdown', 'str', 'str', 'str', 'str', 'number'] | |
df_results_init = df_results.copy()[show_columns] | |
df_results_chinese_init = df_results_chinese.copy()[show_columns] | |
def update_table( | |
hidden_df: pd.DataFrame, | |
# columns: list, | |
#type_query: list, | |
open_query: list, | |
# precision_query: str, | |
# size_query: list, | |
# show_deleted: bool, | |
query: str, | |
): | |
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted) | |
# filtered_df = filter_queries(query, filtered_df) | |
# df = select_columns(filtered_df, columns) | |
filtered_df = hidden_df.copy() | |
# filtered_df = filtered_df[filtered_df['type'].isin(type_query)] | |
map_open = {'open': 'Yes', 'closed': 'No'} | |
filtered_df = filtered_df[filtered_df['Open?'].isin([map_open[o] for o in open_query])] | |
filtered_df = filter_queries(query, filtered_df) | |
# filtered_df = filtered_df[[map_columns[k] for k in columns]] | |
# deduplication | |
# df = df.drop_duplicates(subset=["Model"]) | |
df = filtered_df.drop_duplicates() | |
df = df[show_columns] | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df['Model'].str.contains(query, case=False))] | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
return filtered_df | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.HTML(SUB_TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# the first tab | |
with gr.TabItem("English", elem_id="llm-benchmark-Sum", id=0): | |
# meta-info | |
with gr.Row(): | |
with gr.Column(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for models you are interested in (separate multiple models with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
# with gr.Row(): | |
# with gr.Column(): | |
# type_query = gr.CheckboxGroup( | |
# choices=["π’ base", "πΆ chat"], | |
# value=["πΆ chat" ], | |
# label="model types to show", | |
# elem_id="type-select", | |
# interactive=True, | |
# ) | |
with gr.Column(): | |
open_query = gr.CheckboxGroup( | |
choices=["open", "closed"], | |
value=["open", "closed"], | |
label="open-source OR closed-source models?", | |
elem_id="open-select", | |
interactive=True, | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value = df_results, | |
datatype = TYPES, | |
elem_id = "leaderboard-table", | |
interactive = False, | |
visible=True, | |
# column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"], | |
) | |
gr.Markdown("The \"Cost\" column is calculated as USD / Million tokens of output.") | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=df_results_init, | |
# elem_id="leaderboard-table", | |
interactive=False, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
# df_avg, | |
hidden_leaderboard_table_for_search, | |
# shown_columns, | |
#type_query, | |
open_query, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
#for selector in [type_query, open_query]: | |
for selector in [open_query]: | |
selector.change( | |
update_table, | |
[ | |
# df_avg, | |
hidden_leaderboard_table_for_search, | |
# shown_columns, | |
#type_query, | |
open_query, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
with gr.TabItem("Chinese", elem_id="llm-benchmark-Sum", id=1): | |
# meta-info | |
with gr.Row(): | |
with gr.Column(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for models you are interested in (separate multiple models with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
# with gr.Row(): | |
# with gr.Column(): | |
# type_query = gr.CheckboxGroup( | |
# choices=["π’ base", "πΆ chat"], | |
# value=["πΆ chat" ], | |
# label="model types to show", | |
# elem_id="type-select", | |
# interactive=True, | |
# ) | |
with gr.Column(): | |
open_query = gr.CheckboxGroup( | |
choices=["open", "closed"], | |
value=["open", "closed"], | |
label="open-source OR closed-source models?", | |
elem_id="open-select", | |
interactive=True, | |
) | |
leaderboard_table = gr.components.Dataframe( | |
value = df_results_chinese, | |
datatype = TYPES, | |
elem_id = "leaderboard-table", | |
interactive = False, | |
visible=True, | |
# column_widths=["20%", "6%", "8%", "6%", "8%", "8%", "6%", "6%", "6%", "6%", "6%"], | |
) | |
gr.Markdown("The \"Cost\" column is calculated as USD / Million tokens of output.") | |
hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
value=df_results_chinese_init, | |
# elem_id="leaderboard-table", | |
interactive=False, | |
visible=False, | |
) | |
search_bar.submit( | |
update_table, | |
[ | |
# df_avg, | |
hidden_leaderboard_table_for_search, | |
# shown_columns, | |
#type_query, | |
open_query, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
#for selector in [type_query, open_query]: | |
for selector in [open_query]: | |
selector.change( | |
update_table, | |
[ | |
# df_avg, | |
hidden_leaderboard_table_for_search, | |
# shown_columns, | |
#type_query, | |
open_query, | |
# filter_columns_type, | |
# filter_columns_precision, | |
# filter_columns_size, | |
# deleted_models_visibility, | |
search_bar, | |
], | |
leaderboard_table, | |
) | |
# with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=1): | |
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
# with gr.Row(): | |
# with gr.Accordion("π Citation", open=False): | |
# citation_button = gr.Textbox( | |
# value=CITATION_BUTTON_TEXT, | |
# label=CITATION_BUTTON_LABEL, | |
# lines=20, | |
# elem_id="citation-button", | |
# show_copy_button=True, | |
# ) | |
gr.Markdown(CONTACT_TEXT, elem_classes="markdown-text") | |
demo.launch() | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch(share=True) | |