File size: 6,047 Bytes
6f966a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import dataclasses
import logging
import math
import os
import io
import sys
import time
import json
from typing import Optional, Sequence, Union

import openai
import tqdm
from openai import openai_object
import copy

StrOrOpenAIObject = Union[str, openai_object.OpenAIObject]


openai_org = os.getenv("OPENAI_ORG")
if openai_org is not None:
    openai.organization = openai_org
    logging.warning(f"Switching to organization: {openai_org} for OAI API key.")


@dataclasses.dataclass
class OpenAIDecodingArguments(object):
    max_tokens: int = 1800
    temperature: float = 0.2
    top_p: float = 1.0
    n: int = 1
    stream: bool = False
    stop: Optional[Sequence[str]] = None
    presence_penalty: float = 0.0
    frequency_penalty: float = 0.0
    # logprobs: Optional[int] = None


def openai_completion(
    prompts, #: Union[str, Sequence[str], Sequence[dict[str, str]], dict[str, str]],
    decoding_args: OpenAIDecodingArguments,
    model_name="text-davinci-003",
    sleep_time=2,
    batch_size=1,
    max_instances=sys.maxsize,
    max_batches=sys.maxsize,
    return_text=False,
    **decoding_kwargs,
) -> Union[Union[StrOrOpenAIObject], Sequence[StrOrOpenAIObject], Sequence[Sequence[StrOrOpenAIObject]],]:
    """Decode with OpenAI API.

    Args:
        prompts: A string or a list of strings to complete. If it is a chat model the strings should be formatted
            as explained here: https://github.com/openai/openai-python/blob/main/chatml.md. If it is a chat model
            it can also be a dictionary (or list thereof) as explained here:
            https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb
        decoding_args: Decoding arguments.
        model_name: Model name. Can be either in the format of "org/model" or just "model".
        sleep_time: Time to sleep once the rate-limit is hit.
        batch_size: Number of prompts to send in a single request. Only for non chat model.
        max_instances: Maximum number of prompts to decode.
        max_batches: Maximum number of batches to decode. This argument will be deprecated in the future.
        return_text: If True, return text instead of full completion object (which contains things like logprob).
        decoding_kwargs: Additional decoding arguments. Pass in `best_of` and `logit_bias` if you need them.

    Returns:
        A completion or a list of completions.
        Depending on return_text, return_openai_object, and decoding_args.n, the completion type can be one of
            - a string (if return_text is True)
            - an openai_object.OpenAIObject object (if return_text is False)
            - a list of objects of the above types (if decoding_args.n > 1)
    """
    is_chat_model = "gpt-3.5" in model_name or "gpt-4" in model_name
    is_single_prompt = isinstance(prompts, (str, dict))
    if is_single_prompt:
        prompts = [prompts]

    if max_batches < sys.maxsize:
        logging.warning(
            "`max_batches` will be deprecated in the future, please use `max_instances` instead."
            "Setting `max_instances` to `max_batches * batch_size` for now."
        )
        max_instances = max_batches * batch_size

    prompts = prompts[:max_instances]
    num_prompts = len(prompts)
    prompt_batches = [
        prompts[batch_id * batch_size : (batch_id + 1) * batch_size]
        for batch_id in range(int(math.ceil(num_prompts / batch_size)))
    ]

    completions = []
    for batch_id, prompt_batch in tqdm.tqdm(
        enumerate(prompt_batches),
        desc="prompt_batches",
        total=len(prompt_batches),
    ):
        batch_decoding_args = copy.deepcopy(decoding_args)  # cloning the decoding_args

        while True:
            try:
                shared_kwargs = dict(
                    model=model_name,
                    **batch_decoding_args.__dict__,
                    **decoding_kwargs,
                )
                if is_chat_model:
                    completion_batch = openai.ChatCompletion.create(
                        messages=[
                            {"role": "system", "content": "You are a helpful assistant."},
                            {"role": "user", "content": prompt_batch[0]}
                        ],
                        **shared_kwargs
                    )
                else:
                    completion_batch = openai.Completion.create(prompt=prompt_batch, **shared_kwargs)

                choices = completion_batch.choices
    
                for choice in choices:
                    choice["total_tokens"] = completion_batch.usage.total_tokens
                completions.extend(choices)
                break
            except openai.error.OpenAIError as e:
                logging.warning(f"OpenAIError: {e}.")
                if "Please reduce your prompt" in str(e):
                    batch_decoding_args.max_tokens = int(batch_decoding_args.max_tokens * 0.8)
                    logging.warning(f"Reducing target length to {batch_decoding_args.max_tokens}, Retrying...")
                else:
                    logging.warning("Hit request rate limit; retrying...")
                    time.sleep(sleep_time)  # Annoying rate limit on requests.

    if return_text:
        completions = [completion.text for completion in completions]
    if decoding_args.n > 1:
        # make completions a nested list, where each entry is a consecutive decoding_args.n of original entries.
        completions = [completions[i : i + decoding_args.n] for i in range(0, len(completions), decoding_args.n)]
    if is_single_prompt:
        # Return non-tuple if only 1 input and 1 generation.
        (completions,) = completions
    return completions


def write_ans_to_file(ans_data, file_prefix, output_dir="./output"):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    filename = os.path.join(output_dir, file_prefix + ".txt")
    with open(filename, "w") as f:
        for ans in ans_data:
            f.write(ans + "\n")