""" run: python -m relevancy run_all_day_paper \ --output_dir ./data \ --model_name="gpt-3.5-turbo" \ """ import time import json import os import random import re import string from datetime import datetime import numpy as np import tqdm import utils def encode_prompt(query, prompt_papers): """Encode multiple prompt instructions into a single string.""" prompt = open("src/relevancy_prompt.txt").read() + "\n" prompt += query['interest'] for idx, task_dict in enumerate(prompt_papers): (title, authors, abstract) = task_dict["title"], task_dict["authors"], task_dict["abstract"] if not title: raise prompt += f"###\n" prompt += f"{idx + 1}. Title: {title}\n" prompt += f"{idx + 1}. Authors: {authors}\n" prompt += f"{idx + 1}. Abstract: {abstract}\n" prompt += f"\n Generate response:\n1." print(prompt) return prompt def post_process_chat_gpt_response(paper_data, response, threshold_score=8): selected_data = [] if response is None: return [] json_items = response['message']['content'].replace("\n\n", "\n").split("\n") pattern = r"^\d+\. |\\" import pprint try: score_items = [ json.loads(re.sub(pattern, "", line)) for line in json_items if "relevancy score" in line.lower()] except Exception: pprint.pprint([re.sub(pattern, "", line) for line in json_items if "relevancy score" in line.lower()]) raise RuntimeError("failed") pprint.pprint(score_items) scores = [] for item in score_items: temp = item["Relevancy score"] if "/" in temp: scores.append(int(temp.split("/")[0])) else: scores.append(int(temp)) if len(score_items) != len(paper_data): score_items = score_items[:len(paper_data)] hallucination = True else: hallucination = False for idx, inst in enumerate(score_items): # if the decoding stops due to length, the last example is likely truncated so we discard it if scores[idx] < threshold_score: continue output_str = "Title: " + paper_data[idx]["title"] + "\n" output_str += "Authors: " + paper_data[idx]["authors"] + "\n" output_str += "Link: " + paper_data[idx]["main_page"] + "\n" for key, value in inst.items(): paper_data[idx][key] = value output_str += key + ": " + value + "\n" paper_data[idx]['summarized_text'] = output_str selected_data.append(paper_data[idx]) return selected_data, hallucination def find_word_in_string(w, s): return re.compile(r"\b({0})\b".format(w), flags=re.IGNORECASE).search(s) def process_subject_fields(subjects): all_subjects = subjects.split(";") all_subjects = [s.split(" (")[0] for s in all_subjects] return all_subjects def generate_relevance_score( all_papers, query, model_name="gpt-3.5-turbo", threshold_score=8, num_paper_in_prompt=4, temperature=0.4, top_p=1.0, sorting=True ): ans_data = [] request_idx = 1 hallucination = False for id in tqdm.tqdm(range(0, len(all_papers), num_paper_in_prompt)): prompt_papers = all_papers[id:id+num_paper_in_prompt] # only sampling from the seed tasks prompt = encode_prompt(query, prompt_papers) decoding_args = utils.OpenAIDecodingArguments( temperature=temperature, n=1, max_tokens=1072, # hard-code to maximize the length. the requests will be automatically adjusted top_p=top_p, ) request_start = time.time() response = utils.openai_completion( prompts=prompt, model_name=model_name, batch_size=1, decoding_args=decoding_args, logit_bias={"100257": -100}, # prevent the <|endoftext|> from being generated # "100265":-100, "100276":-100 for <|im_end|> and token ) print ("response", response['message']['content']) request_duration = time.time() - request_start process_start = time.time() batch_data, hallu = post_process_chat_gpt_response(prompt_papers, response, threshold_score=threshold_score) hallucination = hallucination or hallu ans_data.extend(batch_data) print(f"Request {request_idx+1} took {request_duration:.2f}s") print(f"Post-processing took {time.time() - process_start:.2f}s") if sorting: ans_data = sorted(ans_data, key=lambda x: x["Relevancy score"], reverse=True) return ans_data, hallucination def run_all_day_paper( query={"interest":"", "subjects":["Computation and Language", "Artificial Intelligence"]}, date=None, data_dir="../data", model_name="gpt-3.5-turbo", threshold_score=8, num_paper_in_prompt=8, temperature=0.4, top_p=1.0 ): if date is None: date = datetime.today().strftime('%a, %d %b %y') # string format such as Wed, 10 May 23 print ("the date for the arxiv data is: ", date) all_papers = [json.loads(l) for l in open(f"{data_dir}/{date}.jsonl", "r")] print (f"We found {len(all_papers)}.") all_papers_in_subjects = [ t for t in all_papers if bool(set(process_subject_fields(t['subjects'])) & set(query['subjects'])) ] print(f"After filtering subjects, we have {len(all_papers_in_subjects)} papers left.") ans_data = generate_relevance_score(all_papers_in_subjects, query, model_name, threshold_score, num_paper_in_prompt, temperature, top_p) utils.write_ans_to_file(ans_data, date, output_dir="../outputs") return ans_data if __name__ == "__main__": query = {"interest":""" 1. Large language model pretraining and finetunings 2. Multimodal machine learning 3. Do not care about specific application, for example, information extraction, summarization, etc. 4. Not interested in paper focus on specific languages, e.g., Arabic, Chinese, etc.\n""", "subjects":["Computation and Language"]} ans_data = run_all_day_paper(query)