Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import numpy as np | |
from PIL import Image | |
from diffusers import ( | |
StableDiffusionControlNetPipeline, | |
ControlNetModel, | |
UniPCMultistepScheduler, | |
) | |
class TextToImage: | |
def __init__(self, device): | |
self.device = device | |
self.model = self.initialize_model() | |
def initialize_model(self): | |
if self.device == 'cpu': | |
self.data_type = torch.float32 | |
else: | |
self.data_type = torch.float16 | |
controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-canny", | |
torch_dtype=self.data_type, | |
map_location=self.device, # Add this line | |
).to(self.device) | |
pipeline = StableDiffusionControlNetPipeline.from_pretrained( | |
# "pretrained_models/stable-diffusion-v1-5", | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=self.data_type, | |
map_location=self.device, # Add this line | |
) | |
pipeline.scheduler = UniPCMultistepScheduler.from_config( | |
pipeline.scheduler.config | |
) | |
pipeline.to(self.device) | |
if self.device != 'cpu': | |
pipeline.enable_model_cpu_offload() | |
return pipeline | |
def preprocess_image(image): | |
image = np.array(image) | |
low_threshold = 100 | |
high_threshold = 200 | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = np.stack([image, image, image], axis=2) | |
image = Image.fromarray(image) | |
return image | |
def text_to_image(self, text, image): | |
print('\033[1;35m' + '*' * 100 + '\033[0m') | |
print('\nStep5, Text to Image:') | |
image = self.preprocess_image(image) | |
generated_image = self.model(text, image, num_inference_steps=20).images[0] | |
print("Generated image has been svaed.") | |
print('\033[1;35m' + '*' * 100 + '\033[0m') | |
return generated_image | |
def text_to_image_debug(self, text, image): | |
print("text_to_image_debug") | |
return image |