Spaces:
Sleeping
Sleeping
import streamlit as st | |
from sentence_transformers import SentenceTransformer, util | |
# Load the model | |
model = SentenceTransformer('sentence-transformers/msmarco-distilbert-dot-v5') | |
# Define the Streamlit app | |
def main(): | |
st.title("Text Embedding Generator") | |
# Get user input | |
text_input = st.text_area("Enter text to generate embeddings:", "") | |
if st.button("Generate Embedding"): | |
if text_input: | |
# Call the function to get the embedding | |
embedding = get_emb(text_input) | |
# Display the embedding | |
st.success("Embedding generated successfully:") | |
st.write(embedding) | |
else: | |
st.warning("Please enter text to generate embeddings.") | |
# Function to get the embedding | |
def get_emb(text): | |
return model.encode(text) | |
# Run the Streamlit app | |
if __name__ == "__main__": | |
main() | |