File size: 3,620 Bytes
49c9656
 
 
 
7dd32f0
49c9656
 
 
7dd32f0
49c9656
 
 
 
 
 
 
 
 
 
 
7dd32f0
49c9656
 
7dd32f0
 
 
49c9656
 
 
 
7dd32f0
49c9656
 
 
 
7dd32f0
49c9656
7dd32f0
49c9656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
import spaces
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from transformers import AutoTokenizer

MAX_INPUT_LIMIT = 3584
MAX_NEW_TOKENS = 1536
MODEL_HF = "Azure99/blossom-v5.1-34b"
MODEL_REPO = "Azure99/blossom-v5.1-34b-gguf"
MODEL_FILE = "model-q6_k.gguf"
MODEL_LOCAL_DIR = "./"

hf_hub_download(
    repo_id=MODEL_REPO,
    filename=MODEL_FILE,
    local_dir=MODEL_LOCAL_DIR
)

llm: Llama = None
tokenizer = AutoTokenizer.from_pretrained(MODEL_HF)


def get_input_ids(inst, history):
    prefix = ("A chat between a human and an artificial intelligence bot. "
              "The bot gives helpful, detailed, and polite answers to the human's questions.")
    patterns = []
    for conv in history:
        patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ')
        patterns.append(f'{conv[1]}')
    patterns.append(f'\n|Human|: {inst}\n|Bot|: ')
    patterns[0] = prefix + patterns[0]

    input_ids = []
    for i, pattern in enumerate(patterns):
        input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0))
        if i % 2 == 1:
            input_ids += [tokenizer.eos_token_id]
    return input_ids


@spaces.GPU
def chat(inst, history, temperature, top_p, repetition_penalty):
    global llm
    if llm is None:
        llm = Llama(model_path=MODEL_FILE, n_gpu_layers=-1, flash_attn=True, offload_kqv=True, n_ctx=4096)

    input_ids = get_input_ids(inst, history)
    if len(input_ids) > MAX_INPUT_LIMIT:
        yield "The input is too long, please clear the history."
        return

    generate_config = dict(temperature=temperature, top_p=top_p, repeat_penalty=repetition_penalty,
                           top_k=50, stream=True, max_tokens=1024)

    outputs = ""
    for chunk in llm(input_ids, **generate_config):
        outputs += chunk["choices"][0]["text"]
        yield outputs


additional_inputs = [
    gr.Slider(
        label="Temperature",
        value=0.5,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Controls randomness in choosing words.",
    ),
    gr.Slider(
        label="Top-P",
        value=0.85,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Picks words until their combined probability is at least top_p.",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.05,
        minimum=1.0,
        maximum=1.2,
        step=0.01,
        interactive=True,
        info="Repetition Penalty: Controls how much repetition is penalized.",
    )
]

gr.ChatInterface(chat,
                 chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True),
                 textbox=gr.Textbox(placeholder="", container=False, scale=7),
                 title="Blossom 34B Demo",
                 description='Hello, I am Blossom, an open source conversational large language model.🌠'
                             '<a href="https://github.com/Azure99/BlossomLM">GitHub</a>',
                 theme="soft",
                 examples=[["Hello"], ["What is MBTI"], ["用Python实现二分查找"],
                           ["为switch写一篇小红书种草文案,带上emoji"]],
                 cache_examples=False,
                 additional_inputs=additional_inputs,
                 additional_inputs_accordion=gr.Accordion(label="Config", open=True),
                 clear_btn="🗑️Clear",
                 undo_btn="↩️Undo",
                 retry_btn="🔄Retry",
                 submit_btn="➡️Submit",
                 ).queue().launch()