Spaces:
Sleeping
Sleeping
from langchain_community.document_loaders import PyPDFLoader,DirectoryLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
loader = DirectoryLoader('/content/data', glob="./*.pdf", loader_cls=PyPDFLoader) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200) | |
texts = text_splitter.split_documents(documents) | |
embedings = HuggingFaceEmbeddings(model_name="nomic-ai/nomic-embed-text-v1",model_kwargs={"trust_remote_code":True,"revision":"289f532e14dbbbd5a04753fa58739e9ba766f3c7"}) | |
# Creates vector embeddings and saves it in the FAISS DB | |
faiss_db = FAISS.from_documents(texts, embedings) | |
#vectordb=Chroma.from_documents(document_chunks,embedding=embedings) | |
# Saves and export the vector embeddings databse | |
faiss_db.save_local("/content/ipc_vector_db") | |