Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import time | |
from openai import OpenAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
# Set up OpenAI API key | |
api_key = os.getenv("OPENAI_API_KEY") | |
client = OpenAI(api_key=api_key) | |
# Custom template to guide the LLM model | |
custom_template = """<s>[INST]You will start the conversation by greeting the user and introducing yourself as qanoon-bot, | |
stating your availability for legal assistance. Your next step will depend on the user's response. | |
If the user expresses a need for legal assistance in Pakistan, you will ask them to describe their case or problem. | |
After receiving the case or problem details from the user, you will provide the solutions and procedures according to the knowledge base and also give related penal codes and procedures. | |
However, if the user does not require legal assistance in Pakistan, you will immediately thank them and | |
say goodbye, ending the conversation. Remember to base your responses on the user's needs, providing accurate and | |
concise information regarding the Pakistan legal law and rights where applicable. Your interactions should be professional and | |
focused, ensuring the user's queries are addressed efficiently without deviating from the set flows. | |
CONTEXT: {context} | |
CHAT HISTORY: {chat_history} | |
QUESTION: {question} | |
ANSWER: | |
</s>[INST] | |
""" | |
embeddings = OpenAIEmbeddings() | |
# Load vector database | |
db = FAISS.load_local("vectordb", embeddings, allow_dangerous_deserialization=True) | |
db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 4}) | |
# Streamlit page configuration | |
st.set_page_config(page_title="Qanoon-Bot") | |
col1, col2, col3 = st.columns([1, 4, 1]) | |
with col2: | |
st.image("https://s3.ap-south-1.amazonaws.com/makerobosfastcdn/cms-assets/Legal_AI_Chatbot.png") | |
st.markdown( | |
""" | |
<style> | |
div.stButton > button:first-child { | |
background-color: #ffd0d0; | |
} | |
div.stButton > button:active { | |
background-color: #ff6262; | |
} | |
div[data-testid="stStatusWidget"] div button { | |
display: none; | |
} | |
.reportview-container { | |
margin-top: -2em; | |
} | |
#MainMenu {visibility: hidden;} | |
.stDeployButton {display:none;} | |
footer {visibility: hidden;} | |
#stDecoration {display:none;} | |
button[title="View fullscreen"] { | |
visibility: hidden; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Function to reset conversation | |
def reset_conversation(): | |
st.session_state.messages = [] | |
st.session_state.memory.clear() | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "memory" not in st.session_state: | |
st.session_state.memory = ConversationBufferWindowMemory(k=5, memory_key="chat_history", return_messages=True, output_key='answer') | |
# Initialize the prompt | |
prompt = PromptTemplate(template=custom_template, input_variables=['context', 'chat_history', 'question']) | |
# Initialize the LLM | |
llm = ChatOpenAI(temperature=0.2, model_name='gpt-3.5-turbo-0125') | |
# Create the ConversationalRetrievalChain | |
qa = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
memory=st.session_state.memory, | |
retriever=db_retriever, | |
combine_docs_chain_kwargs={'prompt': prompt} | |
) | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message.get("role")): | |
st.write(message.get("content")) | |
# Handle user input | |
input_prompt = st.chat_input("Say something") | |
if input_prompt: | |
with st.chat_message("user"): | |
st.write(input_prompt) | |
st.session_state.messages.append({"role": "user", "content": input_prompt}) | |
with st.chat_message("assistant"): | |
with st.status("Thinking π‘...", expanded=True): | |
result = qa.invoke(input=input_prompt) | |
message_placeholder = st.empty() | |
full_response = "**_Note: Information provided by Qanoon-Bot may be inaccurate._** \n\n\n" | |
for chunk in result["answer"]: | |
full_response += chunk | |
time.sleep(0.02) | |
message_placeholder.markdown(full_response + " β") | |
st.session_state.messages.append({"role": "assistant", "content": result["answer"]}) | |
st.button('Reset All Chat ποΈ', on_click=reset_conversation) | |