Spaces:
Sleeping
Sleeping
import os | |
from pyannote.audio import Pipeline | |
from pydub import AudioSegment | |
from transformers import WhisperForConditionalGeneration, WhisperProcessor | |
import torchaudio | |
import torch | |
device = 0 if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float32 | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
MODEL_NAME = "projecte-aina/whisper-large-v3-ca-es-synth-cs" | |
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype,token=HF_TOKEN).to(device) | |
processor = WhisperProcessor.from_pretrained(MODEL_NAME) | |
def generate(audio_path): | |
input_audio, sample_rate = torchaudio.load(audio) | |
input_audio = torchaudio.transforms.Resample(sample_rate, 16000)(input_audio) | |
input_speech = input_audio[0] | |
input_features = processor(input_speech, | |
sampling_rate=16_000, | |
return_tensors="pt", torch_dtype=torch_dtype).input_features.to(device) | |
pred_ids = model.generate(input_features, | |
return_timestamps=True, | |
max_new_tokens=128) | |
output = processor.batch_decode(pred_ids, skip_special_tokens=True) | |
line = output[0] | |
return line |