Baghdad99 commited on
Commit
12baf3c
1 Parent(s): 41ab7fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -15
app.py CHANGED
@@ -1,17 +1,17 @@
1
  import gradio as gr
2
  import requests
3
- import soundfile as sf
4
  import numpy as np
5
- import tempfile
6
  from pydub import AudioSegment
7
  import io
8
 
9
  # Define the Hugging Face Inference API URLs and headers
10
- ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text"
11
  TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts"
12
  TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text"
13
  headers = {"Authorization": "Bearer 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"}
14
 
 
 
 
15
  # Define the function to query the Hugging Face Inference API
16
  def query(api_url, payload):
17
  response = requests.post(api_url, headers=headers, json=payload)
@@ -21,18 +21,8 @@ def query(api_url, payload):
21
  def translate_speech(audio_file):
22
  print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line
23
 
24
- # Use the ASR pipeline to transcribe the audio
25
- with open(audio_file.name, "rb") as f: # Change this line
26
- data = f.read()
27
- response = requests.post(ASR_API_URL, headers=headers, data=data)
28
- output = response.json()
29
-
30
- # Check if the output contains 'text'
31
- if 'text' in output:
32
- transcription = output["text"]
33
- else:
34
- print("The output does not contain 'text'")
35
- return
36
 
37
  # Use the translation pipeline to translate the transcription
38
  translated_text = query(TRANSLATION_API_URL, {"inputs": transcription})
 
1
  import gradio as gr
2
  import requests
 
3
  import numpy as np
 
4
  from pydub import AudioSegment
5
  import io
6
 
7
  # Define the Hugging Face Inference API URLs and headers
 
8
  TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts"
9
  TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text"
10
  headers = {"Authorization": "Bearer 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"}
11
 
12
+ # Load the Gradio model for speech recognition
13
+ asr_model = gr.load("models/Baghdad99/saad-speech-recognition-hausa-audio-to-text")
14
+
15
  # Define the function to query the Hugging Face Inference API
16
  def query(api_url, payload):
17
  response = requests.post(api_url, headers=headers, json=payload)
 
21
  def translate_speech(audio_file):
22
  print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line
23
 
24
+ # Use the ASR model to transcribe the audio
25
+ transcription = asr_model.predict(audio_file.name) # Change this line
 
 
 
 
 
 
 
 
 
 
26
 
27
  # Use the translation pipeline to translate the transcription
28
  translated_text = query(TRANSLATION_API_URL, {"inputs": transcription})