Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,36 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import torch
|
4 |
-
from datasets import load_dataset
|
5 |
|
6 |
-
|
|
|
|
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
|
|
|
|
|
|
23 |
|
24 |
-
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
-
return outputs["text"]
|
27 |
-
|
28 |
-
|
29 |
-
def synthesise(text):
|
30 |
-
inputs = processor(text=text, return_tensors="pt")
|
31 |
-
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
32 |
-
return speech.cpu()
|
33 |
-
|
34 |
-
|
35 |
-
def speech_to_speech_translation(audio):
|
36 |
-
translated_text = translate(audio)
|
37 |
-
synthesised_speech = synthesise(translated_text)
|
38 |
-
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
-
return 16000, synthesised_speech
|
40 |
-
|
41 |
-
|
42 |
-
title = "Cascaded STST"
|
43 |
-
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
-
|
47 |
-
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
48 |
-
"""
|
49 |
-
|
50 |
-
demo = gr.Blocks()
|
51 |
-
|
52 |
-
mic_translate = gr.Interface(
|
53 |
-
fn=speech_to_speech_translation,
|
54 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
55 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
56 |
-
title=title,
|
57 |
-
description=description,
|
58 |
-
)
|
59 |
-
|
60 |
-
file_translate = gr.Interface(
|
61 |
-
fn=speech_to_speech_translation,
|
62 |
-
inputs=gr.Audio(source="upload", type="filepath"),
|
63 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
-
title=title,
|
66 |
-
description=description,
|
67 |
-
)
|
68 |
-
|
69 |
-
with demo:
|
70 |
-
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
-
|
72 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToWaveform
|
|
|
|
|
3 |
|
4 |
+
# Load your pretrained models
|
5 |
+
asr_model = Wav2Vec2ForCTC.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text")
|
6 |
+
asr_processor = Wav2Vec2Processor.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text")
|
7 |
|
8 |
+
# Load the Hausa translation model
|
9 |
+
translation_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/saad-hausa-text-to-english-text")
|
10 |
+
translation_model = AutoModelForSeq2SeqLM.from_pretrained("Baghdad99/saad-hausa-text-to-english-text")
|
11 |
|
12 |
+
# Load the Text-to-Speech model
|
13 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts")
|
14 |
+
tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts")
|
15 |
|
16 |
+
def translate_speech(speech):
|
17 |
+
# Transcribe the speech to text
|
18 |
+
inputs = asr_processor(speech, return_tensors="pt", padding=True)
|
19 |
+
logits = asr_model(inputs.input_values).logits
|
20 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
21 |
+
transcription = asr_processor.decode(predicted_ids[0])
|
22 |
|
23 |
+
# Translate the text
|
24 |
+
translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True))
|
25 |
+
translated_text = [translation_tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
26 |
|
27 |
+
# Convert the translated text to speech
|
28 |
+
inputs = tts_tokenizer(translated_text, return_tensors='pt')
|
29 |
+
audio = tts_model.generate(inputs['input_ids'])
|
30 |
|
31 |
+
return audio
|
|
|
32 |
|
33 |
+
# Define the Gradio interface
|
34 |
+
iface = gr.Interface(fn=translate_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio")
|
35 |
+
iface.launch()
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|