import gradio as gr import requests import numpy as np from pydub import AudioSegment import io from IPython.display import Audio # Define the Hugging Face Inference API URLs and headers ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text" TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts" TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text" headers = {"Authorization": "Bearer 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"} # Define the function to query the Hugging Face Inference API def query(api_url, payload=None, data=None): if data is not None: response = requests.post(api_url, headers=headers, data=data) else: response = requests.post(api_url, headers=headers, json=payload) response_json = response.json() if 'error' in response_json: print(f"Error in query function: {response_json['error']}") return None return response_json # Define the function to translate speech def translate_speech(audio_file): print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line # Use the ASR pipeline to transcribe the audio data = audio_file.read() output = query(ASR_API_URL, data=data) print(f"Output: {output}") # Debug line # Check if 'error' key exists in the output if 'error' in output: print(f"Error: {output['error']}") estimated_time = output.get('estimated_time') if estimated_time: print(f"Estimated time for the model to load: {estimated_time} seconds") return # Check if 'text' key exists in the output if 'text' in output: transcription = output["text"] else: print("Key 'text' does not exist in the output.") return # Use the translation pipeline to translate the transcription translated_text = query(TRANSLATION_API_URL, {"inputs": transcription}) # Use the TTS pipeline to synthesize the translated text response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text}) audio_bytes = response.content # Display the audio output return Audio(audio_bytes) # print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line # # Use the ASR pipeline to transcribe the audio # data = audio_file.read() # output = query(ASR_API_URL, data=data) # print(f"Output: {output}") # Debug line # # Check if 'text' key exists in the output # if 'text' in output: # transcription = output["text"] # else: # print("Key 'text' does not exist in the output.") # return # # Use the translation pipeline to translate the transcription # translated_text = query(TRANSLATION_API_URL, {"inputs": transcription}) # # Use the TTS pipeline to synthesize the translated text # response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text}) # audio_bytes = response.content # # Display the audio output # return Audio(audio_bytes) # Define the Gradio interface iface = gr.Interface( fn=translate_speech, inputs=gr.inputs.File(type="file"), # Change this line outputs=gr.outputs.Audio(type="numpy"), title="Hausa to English Translation", description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." ) iface.launch()