Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,36 @@
|
|
1 |
-
from transformers import AutoTokenizer, TFBertForSeq2SeqLM # Assuming TFBert model
|
2 |
-
|
3 |
-
# Load tokenizer configurations
|
4 |
-
source_tokenizer = AutoTokenizer.from_pretrained("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/source_tokenizer_config.json")
|
5 |
-
target_tokenizer = AutoTokenizer.from_pretrained("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/target_tokenizer_config.json")
|
6 |
from tensorflow.keras.models import load_model
|
|
|
|
|
|
|
7 |
|
|
|
8 |
model = load_model("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/transliteration_model.h5")
|
9 |
-
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def translate(malayalam_text):
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
return english_text
|
18 |
|
19 |
interface = gradio.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from tensorflow.keras.models import load_model
|
2 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
3 |
+
import json
|
4 |
+
from gradio import Interface
|
5 |
|
6 |
+
# Load model (replace with your actual path)
|
7 |
model = load_model("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/transliteration_model.h5")
|
8 |
+
|
9 |
+
# Load tokenizers from configuration files (replace with your paths)
|
10 |
+
with open("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/source_tokenizer_config.json", "r") as f:
|
11 |
+
source_tokenizer_config = json.load(f)
|
12 |
+
source_tokenizer = Tokenizer(num_words=source_tokenizer_config["num_words"])
|
13 |
+
source_tokenizer.fit_on_texts(source_tokenizer_config["texts"]) # Assuming pre-defined texts
|
14 |
+
|
15 |
+
with open("https://huggingface.co/Bajiyo/mal_en_transliteration/tree/main/target_tokenizer_config.json", "r") as f:
|
16 |
+
target_tokenizer_config = json.load(f)
|
17 |
+
target_tokenizer = Tokenizer(num_words=target_tokenizer_config["num_words"])
|
18 |
+
target_tokenizer.fit_on_texts(target_tokenizer_config["texts"]) # Assuming pre-defined texts
|
19 |
|
20 |
def translate(malayalam_text):
|
21 |
+
# Preprocessing (tokenization)
|
22 |
+
source_tokens = source_tokenizer.texts_to_sequences([malayalam_text])[0]
|
23 |
+
|
24 |
+
# Padding (adjust maxlen based on your model's requirements)
|
25 |
+
maxlen = 100 # Example value, adjust as needed
|
26 |
+
padded_text = pad_sequences([source_tokens], maxlen=maxlen, padding="post")
|
27 |
+
|
28 |
+
# Make predictions using the model
|
29 |
+
predictions = model.predict(padded_text)
|
30 |
+
|
31 |
+
# Postprocessing (decoding)
|
32 |
+
english_text = target_tokenizer.sequences_to_texts([predictions[0]])[0]
|
33 |
+
|
34 |
return english_text
|
35 |
|
36 |
interface = gradio.Interface(
|