Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Hugging Face API URL and token for the model
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
7 |
+
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY")
|
8 |
+
|
9 |
+
# Define a function to send user input to the model
|
10 |
+
def get_bot_response(user_input):
|
11 |
+
headers = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"}
|
12 |
+
response = requests.post(API_URL, headers=headers, json={"inputs": user_input})
|
13 |
+
if response.status_code == 200:
|
14 |
+
result = response.json()
|
15 |
+
bot_response = result[0]["generated_text"]
|
16 |
+
else:
|
17 |
+
bot_response = "Sorry, the model is currently unavailable."
|
18 |
+
return bot_response
|
19 |
+
|
20 |
+
# Set up Gradio interface
|
21 |
+
with gr.Blocks() as demo:
|
22 |
+
gr.Markdown("# Medical Consultation Chatbot")
|
23 |
+
user_input = gr.Textbox(label="Enter your question:")
|
24 |
+
output = gr.Textbox(label="Bot Response")
|
25 |
+
|
26 |
+
# On submit, call the get_bot_response function
|
27 |
+
user_input.submit(get_bot_response, user_input, output)
|
28 |
+
|
29 |
+
demo.launch()
|