Benjamin Bossan
Improve layout
00bfdf9
raw
history blame
5.27 kB
import glob
import io
import os
import pickle
import shutil
from pathlib import Path
from tempfile import mkdtemp
import pandas as pd
import sklearn
import streamlit as st
from huggingface_hub import hf_hub_download
from sklearn.base import BaseEstimator
from sklearn.dummy import DummyClassifier
import skops.io as sio
from skops import card, hub_utils
hf_path = Path(mkdtemp(prefix="skops-")) # hf repo
tmp_path = Path(mkdtemp(prefix="skops-")) # temporary files
description = """Create an sklearn model card
This Hugging Face Space that aims to provide a simple interface to use the
`skops` model card creation utilities.
"""
def load_model() -> None:
if st.session_state.get("model_file") is None:
st.session_state.model = DummyClassifier()
return
bytes_data = st.session_state.model_file.getvalue()
model = pickle.loads(bytes_data)
assert isinstance(model, BaseEstimator), "model must be an sklearn model"
st.session_state.model = model
def load_data() -> None:
if st.session_state.get("data_file"):
bytes_data = io.BytesIO(st.session_state.data_file.getvalue())
df = pd.read_csv(bytes_data)
else:
df = pd.DataFrame([])
st.session_state.data = df
def _clear_repo(path: str) -> None:
for file_path in glob.glob(str(Path(path) / "*")):
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
def init_repo(path: str) -> None:
_clear_repo(path)
requirements = []
task = "tabular-classification"
data = pd.DataFrame([])
if "requirements" in st.session_state:
requirements = st.session_state.requirements.splitlines()
if "task" in st.session_state:
task = st.session_state.task
if "data_file" in st.session_state:
load_data()
data = st.session_state.data
if task.startswith("text") and isinstance(data, pd.DataFrame):
data = data.values.tolist()
try:
file_name = tmp_path / "model.skops"
sio.dump(st.session_state.model, file_name)
hub_utils.init(
model=file_name,
dst=path,
task=task,
data=data,
requirements=requirements,
)
1
except Exception as exc:
print("Uh oh, something went wrong when initializing the repo:", exc)
def create_skops_model_card() -> None:
init_repo(hf_path)
metadata = card.metadata_from_config(hf_path)
model_card = card.Card(model=st.session_state.model, metadata=metadata)
st.session_state.model_card = model_card
def create_empty_model_card() -> None:
init_repo(hf_path)
metadata = card.metadata_from_config(hf_path)
model_card = card.Card(model=st.session_state.model, metadata=metadata, template=None)
model_card.add(**{"Untitled": "[More Information Needed]"})
st.session_state.model_card = model_card
def create_hf_model_card() -> None:
repo_id = st.session_state.get("hf_repo_id", "").strip("'").strip('"')
if not repo_id:
return
print("downloading model card")
path = hf_hub_download(repo_id, "README.md")
model_card = card.parse_modelcard(path)
st.session_state.model_card = model_card
def start_input_form():
if "model" not in st.session_state:
st.session_state.model = DummyClassifier()
if "data" not in st.session_state:
st.session_state.data = pd.DataFrame([])
if "model_card" not in st.session_state:
st.session_state.model_card = None
st.markdown(description)
st.markdown("---")
st.text(
"Upload an sklearn model (strongly recommended)\n"
"The model can be used to automatically populate fields in the model card."
)
st.file_uploader("Upload a model*", on_change=load_model, key="model_file")
st.markdown("---")
st.text(
"Upload samples from your data (in csv format)\n"
"This sample data can be attached to the metadata of the model card"
)
st.file_uploader(
"Upload X data (csv)*", type=["csv"], on_change=load_data, key="data_file"
)
st.markdown("---")
st.selectbox(
label="Choose the task type*",
options=[
"tabular-classification",
"tabular-regression",
"text-classification",
"text-regression",
],
key="task",
on_change=init_repo,
args=(hf_path,)
)
st.markdown("---")
st.text_area(
label="Requirements*",
value=f"scikit-learn=={sklearn.__version__}\n",
key="requirements",
on_change=init_repo,
args=(hf_path,)
)
st.markdown("---")
col_0, col_1, col_2 = st.columns([2, 2, 2])
with col_0:
st.button("Create a new skops model card", on_click=create_skops_model_card)
with col_1:
st.button("Create a new empty model card", on_click=create_empty_model_card)
with col_2:
with st.form("Load existing model card from HF Hub", clear_on_submit=False):
st.text_input("Repo name (e.g. 'gpt2')", key="hf_repo_id")
st.form_submit_button("Load", on_click=create_hf_model_card)
start_input_form()