Spaces:
Runtime error
Runtime error
"""Start page of the app | |
This page is used to initialize a model card that is either: | |
1. based on the skops template | |
2. empty | |
3. loads an existing model card | |
Optionally, users can add a model file, data, requirements, and choose a task. | |
""" | |
import glob | |
import io | |
import os | |
import pickle | |
import shutil | |
from pathlib import Path | |
from tempfile import mkdtemp | |
import pandas as pd | |
import sklearn | |
import streamlit as st | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.utils import HFValidationError, RepositoryNotFoundError | |
from sklearn.base import BaseEstimator | |
from sklearn.dummy import DummyClassifier | |
import skops.io as sio | |
from skops import card, hub_utils | |
hf_path = Path(mkdtemp(prefix="skops-")) # hf repo | |
tmp_path = Path(mkdtemp(prefix="skops-")) # temporary files | |
description = """Create an sklearn model card | |
This Hugging Face Space that aims to provide a simple interface to use the | |
[`skops`](https://skops.readthedocs.io/) model card creation utilities. | |
""" | |
def load_model() -> None: | |
if st.session_state.get("model_file") is None: | |
st.session_state.model = DummyClassifier() | |
return | |
bytes_data = st.session_state.model_file.getvalue() | |
model = pickle.loads(bytes_data) | |
assert isinstance(model, BaseEstimator), "model must be an sklearn model" | |
st.session_state.model = model | |
def load_data() -> None: | |
if st.session_state.get("data_file"): | |
bytes_data = io.BytesIO(st.session_state.data_file.getvalue()) | |
df = pd.read_csv(bytes_data) | |
else: | |
df = pd.DataFrame([]) | |
st.session_state.data = df | |
def _clear_repo(path: str) -> None: | |
for file_path in glob.glob(str(Path(path) / "*")): | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) | |
def init_repo(path: str) -> None: | |
_clear_repo(path) | |
requirements = [] | |
task = "tabular-classification" | |
data = pd.DataFrame([]) | |
if "requirements" in st.session_state: | |
requirements = st.session_state.requirements.splitlines() | |
if "task" in st.session_state: | |
task = st.session_state.task | |
if "data_file" in st.session_state: | |
load_data() | |
data = st.session_state.data | |
if task.startswith("text") and isinstance(data, pd.DataFrame): | |
data = data.values.tolist() | |
try: | |
file_name = tmp_path / "model.skops" | |
sio.dump(st.session_state.model, file_name) | |
hub_utils.init( | |
model=file_name, | |
dst=path, | |
task=task, | |
data=data, | |
requirements=requirements, | |
) | |
1 | |
except Exception as exc: | |
print("Uh oh, something went wrong when initializing the repo:", exc) | |
def create_skops_model_card() -> None: | |
init_repo(hf_path) | |
metadata = card.metadata_from_config(hf_path) | |
model_card = card.Card(model=st.session_state.model, metadata=metadata) | |
st.session_state.model_card = model_card | |
st.session_state.model_card_type = "skops" | |
def create_empty_model_card() -> None: | |
init_repo(hf_path) | |
metadata = card.metadata_from_config(hf_path) | |
model_card = card.Card( | |
model=st.session_state.model, metadata=metadata, template=None | |
) | |
model_card.add(**{"Untitled": "[More Information Needed]"}) | |
st.session_state.model_card = model_card | |
st.session_state.model_card_type = "empty" | |
def create_hf_model_card() -> None: | |
repo_id = st.session_state.get("hf_repo_id", "").strip("'").strip('"') | |
if not repo_id: | |
return | |
try: | |
path = hf_hub_download(repo_id, "README.md") | |
except (HFValidationError, RepositoryNotFoundError): | |
st.error( | |
f"Repository '{repo_id}' could not be found on HF Hub, " | |
"please check that the repo ID is correct." | |
) | |
return | |
model_card = card.parse_modelcard(path) | |
st.session_state.model_card = model_card | |
st.session_state.model_card_type = "loaded" | |
def start_input_form(): | |
if "model" not in st.session_state: | |
st.session_state.model = DummyClassifier() | |
if "data" not in st.session_state: | |
st.session_state.data = pd.DataFrame([]) | |
if "model_card" not in st.session_state: | |
st.session_state.model_card = None | |
st.markdown(description) | |
st.markdown("---") | |
st.text( | |
"Upload an sklearn model (strongly recommended)\n" | |
"The model can be used to automatically populate fields in the model card." | |
) | |
st.file_uploader("Upload a model*", on_change=load_model, key="model_file") | |
st.markdown("---") | |
st.text( | |
"Upload samples from your data (in csv format)\n" | |
"This sample data can be attached to the metadata of the model card" | |
) | |
st.file_uploader( | |
"Upload X data (csv)*", type=["csv"], on_change=load_data, key="data_file" | |
) | |
st.markdown("---") | |
st.selectbox( | |
label="Choose the task type*", | |
options=[ | |
"tabular-classification", | |
"tabular-regression", | |
"text-classification", | |
"text-regression", | |
], | |
key="task", | |
on_change=init_repo, | |
args=(hf_path,), | |
) | |
st.markdown("---") | |
st.text_area( | |
label="Requirements*", | |
value=f"scikit-learn=={sklearn.__version__}\n", | |
key="requirements", | |
on_change=init_repo, | |
args=(hf_path,), | |
) | |
st.markdown("---") | |
st.markdown("Choose one of the options below to get started:") | |
col_0, col_1, col_2 = st.columns([2, 2, 2]) | |
with col_0: | |
st.button("Create a new skops model card", on_click=create_skops_model_card) | |
with col_1: | |
st.button("Create a new empty model card", on_click=create_empty_model_card) | |
with col_2: | |
with st.form("Load existing model card from HF Hub", clear_on_submit=False): | |
st.text_input("Repo name (e.g. 'gpt2')", key="hf_repo_id") | |
st.form_submit_button("Load", on_click=create_hf_model_card) | |
start_input_form() | |