Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from groq import Groq | |
from dotenv import load_dotenv | |
from datetime import datetime # Import datetime module | |
# Load environment variables | |
load_dotenv() | |
# Ensure 'data' folder exists (use lowercase 'data' for consistency) | |
if not os.path.exists("data"): | |
os.makedirs("data") | |
# Function to get speech transcription from audio | |
def get_speech_transcription(audio_file): | |
client = Groq(api_key=os.getenv("GROQ_API_KEY")) | |
# Read the audio file content | |
transcription = client.audio.transcriptions.create( | |
file=(audio_file.name, audio_file.read()), | |
model="whisper-large-v3", # Use the appropriate model | |
response_format="verbose_json", | |
) | |
return transcription.text | |
# Function to get Groq completions for the transcript | |
def get_groq_completions(user_content): | |
client = Groq(api_key=os.getenv("GROQ_API_KEY")) | |
prompt = f""" | |
You will be provided with a transcript of a meeting. | |
Summarize the key points from the transcript in a structured format. | |
If any new topics are discussed, make them as a title and corresponding discussion will be description using number points also add time how much time they discuss on those topics. | |
\n{user_content} | |
""" | |
completion = client.chat.completions.create( | |
model="llama-3.2-90b-text-preview", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are a helpful AI assistant." | |
}, | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
], | |
temperature=0.8, | |
max_tokens=6000, | |
top_p=1, | |
stream=True, | |
stop=None, | |
) | |
result = "" | |
for chunk in completion: | |
result += chunk.choices[0].delta.content or "" | |
return result | |
# Function to save the user content in a file | |
def save_user_content(email, content): | |
# Get the current date and time | |
current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | |
# Create filename using email and current timestamp | |
filename = f"{email}_{current_time}.txt" | |
file_path = os.path.join("data", filename) # Ensure 'data' directory is used | |
with open(file_path, "w") as f: | |
f.write(content) | |
return file_path # Return the file path for confirmation | |
# Streamlit interface | |
def main(): | |
# Add project title | |
st.title("Minutes of Meetings") # Add title here | |
st.sidebar.title("Upload Options") | |
# User email input | |
email = st.sidebar.text_input("Please enter your email address:") | |
# Sidebar options | |
upload_option = st.sidebar.selectbox("Choose how to provide the content:", | |
("Upload Audio File", "Upload Text File", "Paste Text")) | |
user_content = "" | |
# Conditional logic based on sidebar selection | |
if upload_option == "Upload Audio File": | |
audio_file = st.sidebar.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a"]) | |
if audio_file and st.sidebar.button("Generate MoM from Audio"): | |
if not email: | |
st.warning("Please enter your email address.") | |
return | |
st.info("Transcribing audio... Please wait.") | |
user_content = get_speech_transcription(audio_file) | |
st.success("Audio transcribed successfully!") | |
elif upload_option == "Upload Text File": | |
text_file = st.sidebar.file_uploader("Upload a text file", type=["txt"]) | |
if text_file and st.sidebar.button("Generate MoM from Text File"): | |
if not email: | |
st.warning("Please enter your email address.") | |
return | |
user_content = text_file.read().decode("utf-8") | |
st.success("Text file uploaded successfully!") | |
elif upload_option == "Paste Text": | |
user_content = st.sidebar.text_area("Paste your text here:") | |
if st.sidebar.button("Generate MoM from Pasted Text"): | |
if not email: | |
st.warning("Please enter your email address.") | |
return | |
if not user_content: | |
st.warning("Please paste some text before generating the MoM.") | |
return | |
if user_content: | |
st.info("Generating MoM... Please wait.") | |
# Save user content and get file path | |
file_path = save_user_content(email, user_content) | |
# Generate MoM | |
generated_mom = get_groq_completions(user_content) | |
# Display the generated MoM | |
st.markdown("### Generated MoM:") | |
st.text_area("", value=generated_mom, height=500) | |
if __name__ == "__main__": | |
main() | |