File size: 44,091 Bytes
201ff33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173c19
201ff33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
from numerize.numerize import numerize
import streamlit as st
import pandas as pd
import json
from classes import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from classes import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from classes import class_from_dict
import os
import base64




color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45']


CURRENCY_INDICATOR = '€'

def load_authenticator():
    with open('config.yaml') as file:
        config = yaml.load(file, Loader=SafeLoader)
        st.session_state['config'] = config
    authenticator = stauth.Authenticate(
        config['credentials'],
        config['cookie']['name'],
        config['cookie']['key'],
        config['cookie']['expiry_days'],
        config['preauthorized']
    )
    st.session_state['authenticator'] = authenticator
    return authenticator

def nav_page(page_name, timeout_secs=3):
    nav_script = """

        <script type="text/javascript">

            function attempt_nav_page(page_name, start_time, timeout_secs) {

                var links = window.parent.document.getElementsByTagName("a");

                for (var i = 0; i < links.length; i++) {

                    if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {

                        links[i].click();

                        return;

                    }

                }

                var elasped = new Date() - start_time;

                if (elasped < timeout_secs * 1000) {

                    setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);

                } else {

                    alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");

                }

            }

            window.addEventListener("load", function() {

                attempt_nav_page("%s", new Date(), %d);

            });

        </script>

    """ % (page_name, timeout_secs)
    html(nav_script)


# def load_local_css(file_name):
#     with open(file_name) as f:
#         st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)


# def set_header():
#     return st.markdown(f"""<div class='main-header'>
#                     <h1>MMM LiME</h1>
#                     <img src="https://assets-global.website-files.com/64c8fffb0e95cbc525815b79/64df84637f83a891c1473c51_Vector%20(Stroke).svg   ">
#             </div>""", unsafe_allow_html=True)

path = os.path.dirname(__file__)

file_ = open(f"{path}/mastercard_logo.png", "rb")

contents = file_.read()

data_url = base64.b64encode(contents).decode("utf-8")

file_.close()

 

DATA_PATH = './data'

IMAGES_PATH = './data/images_224_224'

# New - Sprint 2
if 'bin_dict' not in st.session_state:
    
    with open("data_import.pkl", "rb") as f:
        data = pickle.load(f)

        st.session_state['bin_dict'] = data["bin_dict"]

# panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in  st.session_state['bin_dict']['Panel Level 1']  ] [0]# set the panel column

panel_col="Panel"

is_panel = True if len(panel_col)>0 else False

date_col='Date'
#is_panel = False # flag if set to true - do panel level response curves

def load_local_css(file_name):

    with open(file_name) as f:

        st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)

 

 

# def set_header():

#     return st.markdown(f"""<div class='main-header'>

#                     <h1>H & M Recommendations</h1>

#                     <img src="data:image;base64,{data_url}", alt="Logo">

#             </div>""", unsafe_allow_html=True)
path1 = os.path.dirname(__file__)

file_1 = open(f"{path}/ALDI_2017.png", "rb")

contents1 = file_1.read()

data_url1 = base64.b64encode(contents1).decode("utf-8")

file_1.close()

 

DATA_PATH1 = './data'

IMAGES_PATH1 = './data/images_224_224'





def set_header():
    return st.markdown(f"""<div class='main-header'>

                    <!-- <h1></h1> -->

                       <div >

                       <img class='blend-logo' src="data:image;base64,{data_url1}", alt="Logo">

            </div>""", unsafe_allow_html=True)

# def set_header():
#     logo_path = "./path/to/your/local/LIME_logo.png"  # Replace with the actual file path
#     text = "LiME"
#     return st.markdown(f"""<div class='main-header'>
#                     <img src="data:image/png;base64,{data_url}" alt="Logo" style="float: left; margin-right: 10px; width: 100px; height: auto;">
#                     <h1>{text}</h1>
#             </div>""", unsafe_allow_html=True)


def s_curve(x,K,b,a,x0):
    return K / (1 + b * np.exp(-a*(x-x0)))


def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col):
    '''

        function to create the data which is used in initialize data fn

        X : X test with contributions

        df : originally uploaded data (media data) which has raw vars

        spends_X : spends of dates in X test

    '''

    # define channels
    channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],

                'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'],

                'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions',
                                             'fb_level_achieved_tier_2_clicks'],

                 'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],

                'ga_app': ['ga_app_impressions', 'ga_app_clicks'],

                'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],

                'kwai': ['kwai_impressions', 'kwai_clicks'],

                'programmatic': ['programmatic_impressions', 'programmatic_clicks'],

                 # 'affiliates':['affiliates_clicks'],
                 #
                 # "indicacao":['indicacao_clicks'],
                 #
                 # "infleux":['infleux_clicks'],
                 #
                 # "influencer":['influencer_clicks']
                }

    channel_list = list(channels.keys())

    # map transformed variable to raw variable name & channel name
    # mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
    variables = {}
    channel_and_variables = {}
    new_variables = {}
    new_channels_and_variables = {}

    for transformed_var in [col for col in
                            X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if
                            "_contr" not in col]:
        if len([col for col in df.columns if col in transformed_var]) == 1:
            raw_var = [col for col in df.columns if col in transformed_var][0]
            variables[transformed_var] = raw_var
            channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][
                0]
        else:
            new_variables[transformed_var] = transformed_var
            new_channels_and_variables[transformed_var] = 'base'

    # Raw DF
    raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left',
                     on=[date_col, panel_col])
    assert len(raw_X) == len(X)

    raw_X_cols = []
    for i in raw_X.columns:
        if i in channel_and_variables.keys():
            raw_X_cols.append(channel_and_variables[i])
        else:
            raw_X_cols.append(i)
    raw_X.columns = raw_X_cols

    # Contribution DF
    contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if
                                                         "_contr" in col and "sum_" not in col]].copy()
    new_variables = [col for col in contr_X.columns if
                     "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
    if len(new_variables) > 0:
        contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1)
        contr_X.drop(columns=['panel_effect'], inplace=True)
        contr_X.drop(columns=new_variables, inplace=True)
    else:
        contr_X.rename(columns={'panel_effect': 'const'}, inplace=True)

    new_contr_X_cols = []
    for col in contr_X.columns:
        col_clean = col.replace("_contr", "")
        new_contr_X_cols.append(col_clean)
    contr_X.columns = new_contr_X_cols

    contr_X_cols = []
    for i in contr_X.columns:
        if i in variables.keys():
            contr_X_cols.append(channel_and_variables[variables[i]])
        else:
            contr_X_cols.append(i)
    contr_X.columns = contr_X_cols

    # Spends DF
    spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns]

    raw_X.rename(columns={"date": "Date"}, inplace=True)
    contr_X.rename(columns={"date": "Date"}, inplace=True)
    spends_X.rename(columns={'date': 'Week'}, inplace=True)

    # Create excel
    file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
    with pd.ExcelWriter(file_name) as writer:
        raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
        contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
        spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)


def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col):
    '''

        function to create the data which is used in initialize data fn

        X : X test with contributions

        df : originally uploaded data (media data) which has raw vars

        spends_X : spends of dates in X test

    '''
    # define channels
    channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],

                'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'],

                'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions',
                                             'fb_level_achieved_tier_2_clicks'],

                 'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],

                'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'],

                'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],

                'kwai': ['kwai_impressions', 'kwai_clicks'],

                'programmatic': ['programmatic_impressions', 'programmatic_clicks'],

                 'affiliates':['affiliates_clicks', 'affiliates_impressions'],

                 "indicacao":['indicacao_clicks', 'indicacao_impressions'],

                 "infleux":['infleux_clicks', 'infleux_impressions'],

                 "influencer":['influencer_clicks', 'influencer_impressions']
                }

    channel_list = list(channels.keys())

    # map transformed variable to raw variable name & channel name
    # mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
    variables = {}
    channel_and_variables = {}
    new_variables = {}
    new_channels_and_variables = {}

    cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns))))
    for transformed_var in [col for col in
                            X.drop(columns=cols_to_del).columns if
                            "_contr" not in col]: # also has 'const'
        if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var
            raw_var = [col for col in df.columns if col in transformed_var][0]
            variables[transformed_var] = raw_var
            channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0]
        else: # when no corresponding raw var then base
            new_variables[transformed_var] = transformed_var
            new_channels_and_variables[transformed_var] = 'base'

    # Raw DF
    raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left',
                     on=[date_col])
    assert len(raw_X) == len(X)

    raw_X_cols = []
    for i in raw_X.columns:
        if i in channel_and_variables.keys():
            raw_X_cols.append(channel_and_variables[i])
        else:
            raw_X_cols.append(i)
    raw_X.columns = raw_X_cols

    # Contribution DF
    contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy()
    # st.write(contr_X.columns)
    new_variables = [col for col in contr_X.columns if
                     "_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
    if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const)
        contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1)
        contr_X.drop(columns=new_variables, inplace=True)


    new_contr_X_cols = []
    for col in contr_X.columns:
        col_clean = col.replace("_contr", "")
        new_contr_X_cols.append(col_clean)
    contr_X.columns = new_contr_X_cols

    contr_X_cols = []
    for i in contr_X.columns:
        if i in variables.keys():
            contr_X_cols.append(channel_and_variables[variables[i]])
        else:
            contr_X_cols.append(i)
    contr_X.columns = contr_X_cols

    # Spends DF
    spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns]

    raw_X.rename(columns={"date": "Date"}, inplace=True)
    contr_X.rename(columns={"date": "Date"}, inplace=True)
    spends_X.rename(columns={'date': 'Week'}, inplace=True)

    # Create excel
    file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
    with pd.ExcelWriter(file_name) as writer:
        raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
        contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
        spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)


def initialize_data(target_col,selected_markets):
    # uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173,
    #                    "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1,
    #                    "digital_spends":1}
    #print('State initialized')
    # excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None)
    #excel = pd.read_excel(r"metrics_level_data\Overview_data_test_panel@#revenue.xlsx" + target_col + ".xlsx",sheet_name=None)
    
    excel = pd.read_excel(r"Overview_data_test_panel@#revenue.xlsx",sheet_name=None)

    raw_df = excel['RAW DATA MMM']

    spend_df = excel['SPEND INPUT']
    contri_df = excel['CONTRIBUTION MMM']
    
    #st.write(raw_df)
    if selected_markets!= "Total Market":
      
      raw_df=raw_df[raw_df['Panel']==selected_markets]
      spend_df=spend_df[spend_df['Panel']==selected_markets]
      contri_df=contri_df[contri_df['Panel']==selected_markets]
      
    else:
        raw_df=raw_df.groupby('Date').sum().reset_index()
        spend_df=spend_df.groupby('Week').sum().reset_index()
        contri_df=contri_df.groupby('Date').sum().reset_index()
    #Revenue_df = excel['Revenue']
    
    ## remove sesonalities, indices etc ... 
    exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others'
                  ] 

    # Aggregate all 3 dfs to date level (from date-panel level)
    raw_df[date_col]=pd.to_datetime(raw_df[date_col])
    raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns}
    raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index()

    contri_df[date_col]=pd.to_datetime(contri_df[date_col])
    contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns}
    contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index()

    input_df = raw_df.sort_values(by=[date_col])

    output_df = contri_df.sort_values(by=[date_col])

    spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce')
    spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns}
    spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index()
    # spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
    # spend_df = spend_df.sort_values(by='Week')
    

    channel_list = [col for col in input_df.columns if col not in exclude_columns]
    
    response_curves = {}
    mapes = {}
    rmses = {}
    upper_limits = {}
    powers = {}
    r2 = {}
    conv_rates = {}
    output_cols = []
    channels = {}
    sales = None
    dates = input_df.Date.values
    actual_output_dic = {}
    actual_input_dic = {}

    # ONLY FOR TESTING
    # channel_list=['programmatic']
    infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0]
    # st.write(infeasible_channels)
    channel_list=list(set(channel_list)-set(infeasible_channels))


    for inp_col in channel_list:
        #st.write(inp_col)

        # # New - Sprint 2
        # if is_panel:
        #     input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date
        #     spends = input_df1[inp_col].values
        # else :
        #     spends = input_df[inp_col].values
        spends = spend_df[inp_col].values

        x = spends.copy()
        # upper limit for penalty   
        upper_limits[inp_col] = 2*x.max()



        # contribution
        # New - Sprint 2
        out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
        if is_panel :
            output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index()
            y = output_df1[out_col].values.copy()
        else :
            y = output_df[out_col].values.copy()

        actual_output_dic[inp_col] = y.copy()
        actual_input_dic[inp_col] = x.copy()
        ##output cols aggregation
        output_cols.append(out_col)
        
        ## scale the input
        power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
        if power >= 0 :
            x = x / 10**power
        
            
        x = x.astype('float64')
        y = y.astype('float64')
        #print('#printing yyyyyyyyy')
        #print(inp_col)
        #print(x.max())
        #print(y.max())
        # st.write(y.max(),x.max())
        print(y.max(),x.max())
        if y.max()<=0.01:
            if x.max()<=0.01 :
                st.write("here-here")
                bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))

            else :
                st.write("here")
                bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
        else :
            bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
        #bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))
        params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()),
                                bounds=bounds,
                                maxfev=int(1e5))
        mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
        rmse =  np.sqrt(((y - s_curve(x,*params))**2).mean())
        r2_ = r2_score(y, s_curve(x,*params))

        response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}
        mapes[inp_col] = mape
        rmses[inp_col] = rmse
        r2[inp_col] = r2_
        powers[inp_col] = power
        
        
        ## conversion rates
        spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0]

        #print('#printing spendssss')
        #print(spend_col)
        conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index()
        conv.rename(columns={'index':'Week'},inplace=True)
        conv['year'] = conv.Week.dt.year
        conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0]
        ##print('Before',conv_rates[inp_col])
        # conv_rates[inp_col] = uopx_conv_rates[inp_col]
        ##print('After',(conv_rates[inp_col]))
        
        
        channel = Channel(name=inp_col,dates=dates,
                            spends=spends,
                            # conversion_rate = np.mean(list(conv_rates[inp_col].values())),
                            conversion_rate = conv_rates[inp_col],
                            response_curve_type='s-curve',
                            response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]},
                            bounds=np.array([-10,10]))
        channels[inp_col] = channel
        if sales is None:
            sales = channel.actual_sales
        else:
            sales += channel.actual_sales
        # st.write(inp_col, channel.actual_sales)
    # st.write(output_cols)
    other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values
    correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions)

    scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales'])
    scenario_test_df['other_contributions']=other_contributions
    scenario_test_df['correction']=correction
    scenario_test_df['sales']=sales
    scenario_test_df.to_csv("test/scenario_test_df.csv",index=False)
    output_df.to_csv("test/output_df.csv",index=False)

    scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction)
    ## setting session variables
    st.session_state['initialized'] = True
    st.session_state['actual_df'] = input_df
    st.session_state['raw_df'] = raw_df
    st.session_state['contri_df'] = output_df
    default_scenario_dict = class_to_dict(scenario)
    st.session_state['default_scenario_dict'] = default_scenario_dict
    st.session_state['scenario'] = scenario
    st.session_state['channels_list'] = channel_list
    st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
    st.session_state['rcs'] = response_curves
    st.session_state['powers'] = powers
    st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic)
    st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic)
    
    for channel in channels.values():
        st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1)
    
    st.session_state['xlsx_buffer'] = io.BytesIO()

    
    if Path('../saved_scenarios.pkl').exists():
        with open('../saved_scenarios.pkl','rb') as f:
            st.session_state['saved_scenarios'] = pickle.load(f)
    else:
        st.session_state['saved_scenarios'] = OrderedDict()
        
    st.session_state['total_spends_change'] = 0
    st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
    st.session_state['disable_download_button'] = True
    
# def initialize_data():
#     # fetch data from excel
#     output = pd.read_excel('data.xlsx',sheet_name=None)
#     raw_df = output['RAW DATA MMM']
#     contribution_df = output['CONTRIBUTION MMM']
#     Revenue_df = output['Revenue']

#     ## channels to be shows
#     channel_list = []
#     for col in raw_df.columns:
#         if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
#             ##print(col)
#             channel_list.append(col)
#         else:
#             pass
    
#     ## NOTE : Considered only Desktop spends for all calculations
#     acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
#     ## NOTE : Considered one year of data
#     acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
#     actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
    
#     ##load response curves
#     with open('./grammarly_response_curves.json','r') as f:
#         response_curves = json.load(f)
        
#     ## create channel dict for scenario creation
#     dates = actual_df.Date.values
#     channels = {}
#     rcs = {}
#     constant = 0.
#     for i,info_dict in enumerate(response_curves):
#         name = info_dict.get('name')
#         response_curve_type = info_dict.get('response_curve')
#         response_curve_params = info_dict.get('params')
#         rcs[name] = response_curve_params
#         if name != 'constant':
#             spends = actual_df[name].values
#             channel = Channel(name=name,dates=dates,
#                             spends=spends,
#                             response_curve_type=response_curve_type,
#                             response_curve_params=response_curve_params,
#                             bounds=np.array([-30,30]))
            
#             channels[name] = channel
#         else:
#             constant = info_dict.get('value',0.) * len(dates)
            
#     ## create scenario
#     scenario = Scenario(name='default', channels=channels, constant=constant)
#     default_scenario_dict = class_to_dict(scenario)
    

#     ## setting session variables
#     st.session_state['initialized'] = True
#     st.session_state['actual_df'] = actual_df
#     st.session_state['raw_df'] = raw_df
#     st.session_state['default_scenario_dict'] = default_scenario_dict
#     st.session_state['scenario'] = scenario
#     st.session_state['channels_list'] = channel_list
#     st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
#     st.session_state['rcs'] = rcs
#     for channel in channels.values():
#         if channel.name not in st.session_state:
#             st.session_state[channel.name] = float(channel.actual_total_spends)
    
#     if 'xlsx_buffer' not in st.session_state:
#         st.session_state['xlsx_buffer'] = io.BytesIO()

#     ## for saving scenarios
#     if 'saved_scenarios' not in st.session_state:
#         if Path('../saved_scenarios.pkl').exists():
#             with open('../saved_scenarios.pkl','rb') as f:
#                 st.session_state['saved_scenarios'] = pickle.load(f)
        
#         else:
#             st.session_state['saved_scenarios'] = OrderedDict()

#     if 'total_spends_change' not in st.session_state:
#         st.session_state['total_spends_change'] = 0
        
#     if 'optimization_channels' not in st.session_state:
#         st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
    
#     if 'disable_download_button' not in st.session_state:
#         st.session_state['disable_download_button'] = True
def create_channel_summary(scenario):
    summary_columns = []

    actual_spends_rows = []

    actual_sales_rows = []

    actual_roi_rows = []

    for channel in scenario.channels.values():

        name_mod = channel.name.replace('_', ' ')

        if name_mod.lower().endswith(' imp'):
            name_mod = name_mod.replace('Imp', ' Impressions')

        print(name_mod, channel.actual_total_spends, channel.conversion_rate,
              channel.actual_total_spends * channel.conversion_rate)

        summary_columns.append(name_mod)

        actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate)))

        actual_sales_rows.append(format_numbers((float(channel.actual_total_sales))))

        actual_roi_rows.append(decimal_formater(
            format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate),
                           include_indicator=False, n_decimals=4), n_decimals=4))

    actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T

    actual_summary_df.columns = ['Channel', 'Spends', 'Revenue', 'ROI']

    actual_summary_df['Revenue'] = actual_summary_df['Revenue'].map(lambda x: str(x)[1:])

    return actual_summary_df


# def create_channel_summary(scenario):
#
#     # Provided data
#     data = {
#         'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'],
#         'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'],
#         'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M']
#     }
#
#     # Create DataFrame
#     df = pd.DataFrame(data)
#
#     # Convert currency strings to numeric values
#     df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
#     df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
#
#     # Calculate ROI
#     df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends'])
#
#     # Format columns
#     format_currency = lambda x: f"${x:,.1f}"
#     format_roi = lambda x: f"{x:.1f}"
#
#     df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K']
#     df['Revenue'] =  ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M']
#     df['ROI'] = df['ROI'].apply(format_roi)
#
#     return df


#@st.cache_data()
def create_contribution_pie(scenario):
    #c1f7dc
    
    light_blue = 'rgba(0, 31, 120, 0.7)'
    light_orange = 'rgba(0, 181, 219, 0.7)'
    light_green = 'rgba(240, 61, 20, 0.7)'
    light_red = 'rgba(250, 110, 10, 0.7)'
    light_purple = 'rgba(255, 191, 69, 0.7)'

    colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
    total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Revenue Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]])
    total_contribution_fig.add_trace(
                go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
                    values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
                    marker_colors=[light_blue, light_orange, light_green, light_red, light_purple],
                        hole=0.3),
                row=1, col=1)

    total_contribution_fig.add_trace(
                go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
                    values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
                        hole=0.3),
                row=1, col=2)

    total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
    total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide')
    return total_contribution_fig

#@st.cache_data()

# def create_contribuion_stacked_plot(scenario):
#     weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
#     raw_df = st.session_state['raw_df']
#     df = raw_df.sort_values(by='Date')
#     x = df.Date
#     weekly_spends_data = []
#     weekly_sales_data = []
#     for channel_name in st.session_state['channels_list']:
#         weekly_spends_data.append((go.Bar(x=x, 
#                                           y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
#                                           name=channel_name_formating(channel_name), 
#                                           hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
#                                           legendgroup=channel_name)))
#         weekly_sales_data.append((go.Bar(x=x, 
#                                          y=scenario.channels[channel_name].actual_sales,
#                                          name=channel_name_formating(channel_name), 
#                                          hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
#                                          legendgroup=channel_name, showlegend=False)))
#     for _d in weekly_spends_data:
#         weekly_contribution_fig.add_trace(_d, row=1, col=1)
#     for _d in weekly_sales_data:
#         weekly_contribution_fig.add_trace(_d, row=1, col=2)
#     weekly_contribution_fig.add_trace(go.Bar(x=x, 
#                                          y=scenario.constant + scenario.correction,
#                                          name='Non Media', 
#                                          hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), row=1, col=2)
#     weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
#     weekly_contribution_fig.update_xaxes(showgrid=False)
#     weekly_contribution_fig.update_yaxes(showgrid=False)
#     return weekly_contribution_fig

# @st.cache_data(allow_output_mutation=True)
# def create_channel_spends_sales_plot(channel):
#     if channel is not None:
#         x = channel.dates
#         _spends = channel.actual_spends * channel.conversion_rate
#         _sales = channel.actual_sales
#         channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
#         channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
#         channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
#         channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
#         channel_sales_spends_fig.update_xaxes(showgrid=False)
#         channel_sales_spends_fig.update_yaxes(showgrid=False)
#     else:
#         raw_df = st.session_state['raw_df']
#         df = raw_df.sort_values(by='Date')
#         x = df.Date
#         scenario = class_from_dict(st.session_state['default_scenario_dict'])
#         _sales = scenario.constant + scenario.correction
#         channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
#         channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}"), secondary_y = False)
#         # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}"), secondary_y = True)
#         channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
#         channel_sales_spends_fig.update_xaxes(showgrid=False)
#         channel_sales_spends_fig.update_yaxes(showgrid=False)
#     return channel_sales_spends_fig


# Define a shared color palette


# def create_contribution_pie():
#     color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6']
#     total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]])
#
#     channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media']
#
#     # Assign colors from the limited palette to channels
#     colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)}
#     colors_map['Non Media'] = color_palette[5]  # Assign fixed green color for 'Non Media'
#
#     # Hardcoded values for Spends and Revenue
#     spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
#     revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
#
#     # Add trace for Spends pie chart
#     total_contribution_fig.add_trace(
#         go.Pie(
#             labels=[channel_name for channel_name in channels_list],
#             values=spends_values,
#             marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
#             hole=0.3
#         ),
#         row=1, col=1
#     )
#
#     # Add trace for Revenue pie chart
#     total_contribution_fig.add_trace(
#         go.Pie(
#             labels=[channel_name for channel_name in channels_list],
#             values=revenue_values,
#             marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
#             hole=0.3
#         ),
#         row=1, col=2
#     )
#
#     total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}')
#     total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide')
#     return total_contribution_fig

def create_contribuion_stacked_plot(scenario):
    weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "bar"}, {"type": "bar"}]])
    raw_df = st.session_state['raw_df']
    df = raw_df.sort_values(by='Date')
    x = df.Date
    weekly_spends_data = []
    weekly_sales_data = []
    
    for i, channel_name in enumerate(st.session_state['channels_list']):
        color = color_palette[i % len(color_palette)]
        
        weekly_spends_data.append(go.Bar(
            x=x,
            y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
            name=channel_name_formating(channel_name),
            hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
            legendgroup=channel_name,
            marker_color=color,
        ))
        
        weekly_sales_data.append(go.Bar(
            x=x,
            y=scenario.channels[channel_name].actual_sales,
            name=channel_name_formating(channel_name),
            hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
            legendgroup=channel_name,
            showlegend=False,
            marker_color=color,
        ))
    
    for _d in weekly_spends_data:
        weekly_contribution_fig.add_trace(_d, row=1, col=1)
    for _d in weekly_sales_data:
        weekly_contribution_fig.add_trace(_d, row=1, col=2)
    
    weekly_contribution_fig.add_trace(go.Bar(
        x=x,
        y=scenario.constant + scenario.correction,
        name='Non Media',
        hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
        marker_color=color_palette[-1],
    ), row=1, col=2)

    weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date')
    weekly_contribution_fig.update_xaxes(showgrid=False)
    weekly_contribution_fig.update_yaxes(showgrid=False)
    return weekly_contribution_fig

def create_channel_spends_sales_plot(channel):
    if channel is not None:
        x = channel.dates
        _spends = channel.actual_spends * channel.conversion_rate
        _sales = channel.actual_sales
        channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
        channel_sales_spends_fig.add_trace(go.Bar(
            x=x,
            y=_sales,
            marker_color=color_palette[1],  # You can choose a color from the palette
            name='Revenue',
            hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
        ), secondary_y=False)
        
        channel_sales_spends_fig.add_trace(go.Scatter(
            x=x,
            y=_spends,
            line=dict(color=color_palette[3]),  # You can choose another color from the palette
            name='Spends',
            hovertemplate="Date:%{x}<br>Spend:%{y:$.2s}",
        ), secondary_y=True)
        
        channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Revenue', yaxis2_title='Spends ($)', title='Channel spends and Revenue week-wise')
        channel_sales_spends_fig.update_xaxes(showgrid=False)
        channel_sales_spends_fig.update_yaxes(showgrid=False)
    else:
        raw_df = st.session_state['raw_df']
        df = raw_df.sort_values(by='Date')
        x = df.Date
        scenario = class_from_dict(st.session_state['default_scenario_dict'])
        _sales = scenario.constant + scenario.correction
        channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
        channel_sales_spends_fig.add_trace(go.Bar(
            x=x,
            y=_sales,
            marker_color=color_palette[0],  # You can choose a color from the palette
            name='Revenue',
            hovertemplate="Date:%{x}<br>Revenue:%{y:$.2s}",
        ), secondary_y=False)
        
        channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Revenue', yaxis2_title='Spends ($)', title='Channel spends and Revenue week-wise')
        channel_sales_spends_fig.update_xaxes(showgrid=False)
        channel_sales_spends_fig.update_yaxes(showgrid=False)
    
    return channel_sales_spends_fig

def format_numbers(value, n_decimals=1,include_indicator = True):
    if include_indicator:
        return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}'
    else:
        return f'{numerize(value,n_decimals)}'


def decimal_formater(num_string,n_decimals=1):
    parts = num_string.split('.')
    if len(parts) == 1:
        return num_string+'.' + '0'*n_decimals
    else:
        to_be_padded = n_decimals - len(parts[-1])
        if to_be_padded > 0 :
            return num_string+'0'*to_be_padded
        else:
            return num_string
        
        
def channel_name_formating(channel_name):
    name_mod = channel_name.replace('_', ' ')
    if name_mod.lower().endswith(' imp'):
        name_mod = name_mod.replace('Imp','Spend')
    elif name_mod.lower().endswith(' clicks'):
        name_mod = name_mod.replace('Clicks','Spend')
    return name_mod


def send_email(email,message):
    s = smtplib.SMTP('smtp.gmail.com', 587)
    s.starttls()
    s.login("geethu4444@gmail.com", "jgydhpfusuremcol")
    s.sendmail("geethu4444@gmail.com", email, message)
    s.quit()

if __name__ == "__main__":
    initialize_data()