Update Model_Result_Overview.py
Browse files- Model_Result_Overview.py +212 -212
Model_Result_Overview.py
CHANGED
@@ -1,212 +1,212 @@
|
|
1 |
-
'''
|
2 |
-
MMO Build Sprint 3
|
3 |
-
additions : contributions calculated using tuned Mixed LM model
|
4 |
-
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
|
5 |
-
|
6 |
-
MMO Build Sprint 4
|
7 |
-
additions : response metrics selection
|
8 |
-
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
|
9 |
-
'''
|
10 |
-
|
11 |
-
import streamlit as st
|
12 |
-
import pandas as pd
|
13 |
-
from sklearn.preprocessing import MinMaxScaler
|
14 |
-
import pickle
|
15 |
-
|
16 |
-
from utilities import load_authenticator
|
17 |
-
|
18 |
-
from utilities_with_panel import (set_header,
|
19 |
-
overview_test_data_prep_panel,
|
20 |
-
overview_test_data_prep_nonpanel,
|
21 |
-
initialize_data,
|
22 |
-
load_local_css,
|
23 |
-
create_channel_summary,
|
24 |
-
create_contribution_pie,
|
25 |
-
create_contribuion_stacked_plot,
|
26 |
-
create_channel_spends_sales_plot,
|
27 |
-
format_numbers,
|
28 |
-
channel_name_formating)
|
29 |
-
|
30 |
-
import plotly.graph_objects as go
|
31 |
-
import streamlit_authenticator as stauth
|
32 |
-
import yaml
|
33 |
-
from yaml import SafeLoader
|
34 |
-
import time
|
35 |
-
|
36 |
-
st.set_page_config(layout='wide')
|
37 |
-
load_local_css('styles.css')
|
38 |
-
set_header()
|
39 |
-
|
40 |
-
|
41 |
-
def get_random_effects(media_data, panel_col, mdf):
|
42 |
-
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
43 |
-
|
44 |
-
for i, market in enumerate(media_data[panel_col].unique()):
|
45 |
-
print(i, end='\r')
|
46 |
-
intercept = mdf.random_effects[market].values[0]
|
47 |
-
random_eff_df.loc[i, 'random_effect'] = intercept
|
48 |
-
random_eff_df.loc[i, panel_col] = market
|
49 |
-
|
50 |
-
return random_eff_df
|
51 |
-
|
52 |
-
|
53 |
-
def process_train_and_test(train, test, features, panel_col, target_col):
|
54 |
-
X1 = train[features]
|
55 |
-
|
56 |
-
ss = MinMaxScaler()
|
57 |
-
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
|
58 |
-
|
59 |
-
X1[panel_col] = train[panel_col]
|
60 |
-
X1[target_col] = train[target_col]
|
61 |
-
|
62 |
-
if test is not None:
|
63 |
-
X2 = test[features]
|
64 |
-
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
|
65 |
-
X2[panel_col] = test[panel_col]
|
66 |
-
X2[target_col] = test[target_col]
|
67 |
-
return X1, X2
|
68 |
-
return X1
|
69 |
-
|
70 |
-
def mdf_predict(X_df, mdf, random_eff_df) :
|
71 |
-
X=X_df.copy()
|
72 |
-
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
|
73 |
-
X['pred_fixed_effect'] = mdf.predict(X)
|
74 |
-
|
75 |
-
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
|
76 |
-
X.to_csv('Test/merged_df_contri.csv',index=False)
|
77 |
-
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
|
78 |
-
|
79 |
-
return X
|
80 |
-
|
81 |
-
|
82 |
-
target_col='Revenue'
|
83 |
-
target='Revenue'
|
84 |
-
|
85 |
-
# is_panel=False
|
86 |
-
# is_panel = st.session_state['is_panel']
|
87 |
-
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
|
88 |
-
panel_col='Panel'
|
89 |
-
date_col = 'date'
|
90 |
-
|
91 |
-
#st.write(media_data)
|
92 |
-
|
93 |
-
is_panel = True
|
94 |
-
|
95 |
-
# panel_col='markets'
|
96 |
-
date_col = 'date'
|
97 |
-
for k, v in st.session_state.items():
|
98 |
-
|
99 |
-
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
100 |
-
st.session_state[k] = v
|
101 |
-
|
102 |
-
authenticator = st.session_state.get('authenticator')
|
103 |
-
|
104 |
-
if authenticator is None:
|
105 |
-
authenticator = load_authenticator()
|
106 |
-
|
107 |
-
name, authentication_status, username = authenticator.login('Login', 'main')
|
108 |
-
auth_status = st.session_state['authentication_status']
|
109 |
-
|
110 |
-
if auth_status:
|
111 |
-
authenticator.logout('Logout', 'main')
|
112 |
-
|
113 |
-
is_state_initiaized = st.session_state.get('initialized',False)
|
114 |
-
if not is_state_initiaized:
|
115 |
-
a=1
|
116 |
-
|
117 |
-
def panel_fetch(file_selected):
|
118 |
-
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
119 |
-
|
120 |
-
if "Panel" in raw_data_mmm_df.columns:
|
121 |
-
panel = list(set(raw_data_mmm_df["Panel"]))
|
122 |
-
else:
|
123 |
-
raw_data_mmm_df = None
|
124 |
-
panel = None
|
125 |
-
|
126 |
-
return panel
|
127 |
-
|
128 |
-
def rerun():
|
129 |
-
st.rerun()
|
130 |
-
|
131 |
-
metrics_selected='revenue'
|
132 |
-
|
133 |
-
file_selected = (
|
134 |
-
f"
|
135 |
-
)
|
136 |
-
panel_list = panel_fetch(file_selected)
|
137 |
-
|
138 |
-
if "selected_markets" not in st.session_state:
|
139 |
-
st.session_state['selected_markets']='DMA1'
|
140 |
-
|
141 |
-
|
142 |
-
st.header('Overview of previous spends')
|
143 |
-
|
144 |
-
selected_market= st.selectbox(
|
145 |
-
"Select Markets",
|
146 |
-
["Total Market"] + panel_list
|
147 |
-
)
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
initialize_data(target_col,selected_market)
|
152 |
-
scenario = st.session_state['scenario']
|
153 |
-
raw_df = st.session_state['raw_df']
|
154 |
-
# st.write(scenario.actual_total_spends)
|
155 |
-
# st.write(scenario.actual_total_sales)
|
156 |
-
columns = st.columns((1,1,3))
|
157 |
-
|
158 |
-
with columns[0]:
|
159 |
-
st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
|
160 |
-
###print(f"##################### {scenario.actual_total_sales} ##################")
|
161 |
-
with columns[1]:
|
162 |
-
st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales)))
|
163 |
-
|
164 |
-
|
165 |
-
actual_summary_df = create_channel_summary(scenario)
|
166 |
-
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
|
167 |
-
|
168 |
-
columns = st.columns((2,1))
|
169 |
-
#with columns[0]:
|
170 |
-
with st.expander('Channel wise overview'):
|
171 |
-
st.markdown(actual_summary_df.style.set_table_styles(
|
172 |
-
[{
|
173 |
-
'selector': 'th',
|
174 |
-
'props': [('background-color', '#FFFFF')]
|
175 |
-
},
|
176 |
-
{
|
177 |
-
'selector' : 'tr:nth-child(even)',
|
178 |
-
'props' : [('background-color', '#FFFFF')]
|
179 |
-
}]).to_html(), unsafe_allow_html=True)
|
180 |
-
|
181 |
-
st.markdown("<hr>",unsafe_allow_html=True)
|
182 |
-
##############################
|
183 |
-
|
184 |
-
st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
|
185 |
-
st.markdown("<hr>",unsafe_allow_html=True)
|
186 |
-
|
187 |
-
|
188 |
-
################################3
|
189 |
-
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
|
190 |
-
st.markdown("<hr>",unsafe_allow_html=True)
|
191 |
-
#######################################
|
192 |
-
|
193 |
-
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
|
194 |
-
selected_channel = scenario.channels.get(selected_channel_name,None)
|
195 |
-
|
196 |
-
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
|
197 |
-
|
198 |
-
st.markdown("<hr>",unsafe_allow_html=True)
|
199 |
-
|
200 |
-
# elif auth_status == False:
|
201 |
-
# st.error('Username/Password is incorrect')
|
202 |
-
|
203 |
-
# if auth_status != True:
|
204 |
-
# try:
|
205 |
-
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
|
206 |
-
# if username_forgot_pw:
|
207 |
-
# st.success('New password sent securely')
|
208 |
-
# # Random password to be transferred to user securely
|
209 |
-
# elif username_forgot_pw == False:
|
210 |
-
# st.error('Username not found')
|
211 |
-
# except Exception as e:
|
212 |
-
# st.error(e)
|
|
|
1 |
+
'''
|
2 |
+
MMO Build Sprint 3
|
3 |
+
additions : contributions calculated using tuned Mixed LM model
|
4 |
+
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
|
5 |
+
|
6 |
+
MMO Build Sprint 4
|
7 |
+
additions : response metrics selection
|
8 |
+
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
|
9 |
+
'''
|
10 |
+
|
11 |
+
import streamlit as st
|
12 |
+
import pandas as pd
|
13 |
+
from sklearn.preprocessing import MinMaxScaler
|
14 |
+
import pickle
|
15 |
+
|
16 |
+
from utilities import load_authenticator
|
17 |
+
|
18 |
+
from utilities_with_panel import (set_header,
|
19 |
+
overview_test_data_prep_panel,
|
20 |
+
overview_test_data_prep_nonpanel,
|
21 |
+
initialize_data,
|
22 |
+
load_local_css,
|
23 |
+
create_channel_summary,
|
24 |
+
create_contribution_pie,
|
25 |
+
create_contribuion_stacked_plot,
|
26 |
+
create_channel_spends_sales_plot,
|
27 |
+
format_numbers,
|
28 |
+
channel_name_formating)
|
29 |
+
|
30 |
+
import plotly.graph_objects as go
|
31 |
+
import streamlit_authenticator as stauth
|
32 |
+
import yaml
|
33 |
+
from yaml import SafeLoader
|
34 |
+
import time
|
35 |
+
|
36 |
+
st.set_page_config(layout='wide')
|
37 |
+
load_local_css('styles.css')
|
38 |
+
set_header()
|
39 |
+
|
40 |
+
|
41 |
+
def get_random_effects(media_data, panel_col, mdf):
|
42 |
+
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
43 |
+
|
44 |
+
for i, market in enumerate(media_data[panel_col].unique()):
|
45 |
+
print(i, end='\r')
|
46 |
+
intercept = mdf.random_effects[market].values[0]
|
47 |
+
random_eff_df.loc[i, 'random_effect'] = intercept
|
48 |
+
random_eff_df.loc[i, panel_col] = market
|
49 |
+
|
50 |
+
return random_eff_df
|
51 |
+
|
52 |
+
|
53 |
+
def process_train_and_test(train, test, features, panel_col, target_col):
|
54 |
+
X1 = train[features]
|
55 |
+
|
56 |
+
ss = MinMaxScaler()
|
57 |
+
X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
|
58 |
+
|
59 |
+
X1[panel_col] = train[panel_col]
|
60 |
+
X1[target_col] = train[target_col]
|
61 |
+
|
62 |
+
if test is not None:
|
63 |
+
X2 = test[features]
|
64 |
+
X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
|
65 |
+
X2[panel_col] = test[panel_col]
|
66 |
+
X2[target_col] = test[target_col]
|
67 |
+
return X1, X2
|
68 |
+
return X1
|
69 |
+
|
70 |
+
def mdf_predict(X_df, mdf, random_eff_df) :
|
71 |
+
X=X_df.copy()
|
72 |
+
X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
|
73 |
+
X['pred_fixed_effect'] = mdf.predict(X)
|
74 |
+
|
75 |
+
X['pred'] = X['pred_fixed_effect'] + X['random_effect']
|
76 |
+
X.to_csv('Test/merged_df_contri.csv',index=False)
|
77 |
+
X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
|
78 |
+
|
79 |
+
return X
|
80 |
+
|
81 |
+
|
82 |
+
target_col='Revenue'
|
83 |
+
target='Revenue'
|
84 |
+
|
85 |
+
# is_panel=False
|
86 |
+
# is_panel = st.session_state['is_panel']
|
87 |
+
#panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
|
88 |
+
panel_col='Panel'
|
89 |
+
date_col = 'date'
|
90 |
+
|
91 |
+
#st.write(media_data)
|
92 |
+
|
93 |
+
is_panel = True
|
94 |
+
|
95 |
+
# panel_col='markets'
|
96 |
+
date_col = 'date'
|
97 |
+
for k, v in st.session_state.items():
|
98 |
+
|
99 |
+
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
100 |
+
st.session_state[k] = v
|
101 |
+
|
102 |
+
authenticator = st.session_state.get('authenticator')
|
103 |
+
|
104 |
+
if authenticator is None:
|
105 |
+
authenticator = load_authenticator()
|
106 |
+
|
107 |
+
name, authentication_status, username = authenticator.login('Login', 'main')
|
108 |
+
auth_status = st.session_state['authentication_status']
|
109 |
+
|
110 |
+
if auth_status:
|
111 |
+
authenticator.logout('Logout', 'main')
|
112 |
+
|
113 |
+
is_state_initiaized = st.session_state.get('initialized',False)
|
114 |
+
if not is_state_initiaized:
|
115 |
+
a=1
|
116 |
+
|
117 |
+
def panel_fetch(file_selected):
|
118 |
+
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
119 |
+
|
120 |
+
if "Panel" in raw_data_mmm_df.columns:
|
121 |
+
panel = list(set(raw_data_mmm_df["Panel"]))
|
122 |
+
else:
|
123 |
+
raw_data_mmm_df = None
|
124 |
+
panel = None
|
125 |
+
|
126 |
+
return panel
|
127 |
+
|
128 |
+
def rerun():
|
129 |
+
st.rerun()
|
130 |
+
|
131 |
+
metrics_selected='revenue'
|
132 |
+
|
133 |
+
file_selected = (
|
134 |
+
f"Overview_data_test_panel@#revenue.xlsx"
|
135 |
+
)
|
136 |
+
panel_list = panel_fetch(file_selected)
|
137 |
+
|
138 |
+
if "selected_markets" not in st.session_state:
|
139 |
+
st.session_state['selected_markets']='DMA1'
|
140 |
+
|
141 |
+
|
142 |
+
st.header('Overview of previous spends')
|
143 |
+
|
144 |
+
selected_market= st.selectbox(
|
145 |
+
"Select Markets",
|
146 |
+
["Total Market"] + panel_list
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
initialize_data(target_col,selected_market)
|
152 |
+
scenario = st.session_state['scenario']
|
153 |
+
raw_df = st.session_state['raw_df']
|
154 |
+
# st.write(scenario.actual_total_spends)
|
155 |
+
# st.write(scenario.actual_total_sales)
|
156 |
+
columns = st.columns((1,1,3))
|
157 |
+
|
158 |
+
with columns[0]:
|
159 |
+
st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
|
160 |
+
###print(f"##################### {scenario.actual_total_sales} ##################")
|
161 |
+
with columns[1]:
|
162 |
+
st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales)))
|
163 |
+
|
164 |
+
|
165 |
+
actual_summary_df = create_channel_summary(scenario)
|
166 |
+
actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
|
167 |
+
|
168 |
+
columns = st.columns((2,1))
|
169 |
+
#with columns[0]:
|
170 |
+
with st.expander('Channel wise overview'):
|
171 |
+
st.markdown(actual_summary_df.style.set_table_styles(
|
172 |
+
[{
|
173 |
+
'selector': 'th',
|
174 |
+
'props': [('background-color', '#FFFFF')]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
'selector' : 'tr:nth-child(even)',
|
178 |
+
'props' : [('background-color', '#FFFFF')]
|
179 |
+
}]).to_html(), unsafe_allow_html=True)
|
180 |
+
|
181 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
182 |
+
##############################
|
183 |
+
|
184 |
+
st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
|
185 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
186 |
+
|
187 |
+
|
188 |
+
################################3
|
189 |
+
st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
|
190 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
191 |
+
#######################################
|
192 |
+
|
193 |
+
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
|
194 |
+
selected_channel = scenario.channels.get(selected_channel_name,None)
|
195 |
+
|
196 |
+
st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
|
197 |
+
|
198 |
+
st.markdown("<hr>",unsafe_allow_html=True)
|
199 |
+
|
200 |
+
# elif auth_status == False:
|
201 |
+
# st.error('Username/Password is incorrect')
|
202 |
+
|
203 |
+
# if auth_status != True:
|
204 |
+
# try:
|
205 |
+
# username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
|
206 |
+
# if username_forgot_pw:
|
207 |
+
# st.success('New password sent securely')
|
208 |
+
# # Random password to be transferred to user securely
|
209 |
+
# elif username_forgot_pw == False:
|
210 |
+
# st.error('Username not found')
|
211 |
+
# except Exception as e:
|
212 |
+
# st.error(e)
|