BlendMMM commited on
Commit
22546f6
1 Parent(s): 13eaca0

Update Model_Result_Overview.py

Browse files
Files changed (1) hide show
  1. Model_Result_Overview.py +212 -212
Model_Result_Overview.py CHANGED
@@ -1,212 +1,212 @@
1
- '''
2
- MMO Build Sprint 3
3
- additions : contributions calculated using tuned Mixed LM model
4
- pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
5
-
6
- MMO Build Sprint 4
7
- additions : response metrics selection
8
- pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
9
- '''
10
-
11
- import streamlit as st
12
- import pandas as pd
13
- from sklearn.preprocessing import MinMaxScaler
14
- import pickle
15
-
16
- from utilities import load_authenticator
17
-
18
- from utilities_with_panel import (set_header,
19
- overview_test_data_prep_panel,
20
- overview_test_data_prep_nonpanel,
21
- initialize_data,
22
- load_local_css,
23
- create_channel_summary,
24
- create_contribution_pie,
25
- create_contribuion_stacked_plot,
26
- create_channel_spends_sales_plot,
27
- format_numbers,
28
- channel_name_formating)
29
-
30
- import plotly.graph_objects as go
31
- import streamlit_authenticator as stauth
32
- import yaml
33
- from yaml import SafeLoader
34
- import time
35
-
36
- st.set_page_config(layout='wide')
37
- load_local_css('styles.css')
38
- set_header()
39
-
40
-
41
- def get_random_effects(media_data, panel_col, mdf):
42
- random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
43
-
44
- for i, market in enumerate(media_data[panel_col].unique()):
45
- print(i, end='\r')
46
- intercept = mdf.random_effects[market].values[0]
47
- random_eff_df.loc[i, 'random_effect'] = intercept
48
- random_eff_df.loc[i, panel_col] = market
49
-
50
- return random_eff_df
51
-
52
-
53
- def process_train_and_test(train, test, features, panel_col, target_col):
54
- X1 = train[features]
55
-
56
- ss = MinMaxScaler()
57
- X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
58
-
59
- X1[panel_col] = train[panel_col]
60
- X1[target_col] = train[target_col]
61
-
62
- if test is not None:
63
- X2 = test[features]
64
- X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
65
- X2[panel_col] = test[panel_col]
66
- X2[target_col] = test[target_col]
67
- return X1, X2
68
- return X1
69
-
70
- def mdf_predict(X_df, mdf, random_eff_df) :
71
- X=X_df.copy()
72
- X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
73
- X['pred_fixed_effect'] = mdf.predict(X)
74
-
75
- X['pred'] = X['pred_fixed_effect'] + X['random_effect']
76
- X.to_csv('Test/merged_df_contri.csv',index=False)
77
- X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
78
-
79
- return X
80
-
81
-
82
- target_col='Revenue'
83
- target='Revenue'
84
-
85
- # is_panel=False
86
- # is_panel = st.session_state['is_panel']
87
- #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
88
- panel_col='Panel'
89
- date_col = 'date'
90
-
91
- #st.write(media_data)
92
-
93
- is_panel = True
94
-
95
- # panel_col='markets'
96
- date_col = 'date'
97
- for k, v in st.session_state.items():
98
-
99
- if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
100
- st.session_state[k] = v
101
-
102
- authenticator = st.session_state.get('authenticator')
103
-
104
- if authenticator is None:
105
- authenticator = load_authenticator()
106
-
107
- name, authentication_status, username = authenticator.login('Login', 'main')
108
- auth_status = st.session_state['authentication_status']
109
-
110
- if auth_status:
111
- authenticator.logout('Logout', 'main')
112
-
113
- is_state_initiaized = st.session_state.get('initialized',False)
114
- if not is_state_initiaized:
115
- a=1
116
-
117
- def panel_fetch(file_selected):
118
- raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
119
-
120
- if "Panel" in raw_data_mmm_df.columns:
121
- panel = list(set(raw_data_mmm_df["Panel"]))
122
- else:
123
- raw_data_mmm_df = None
124
- panel = None
125
-
126
- return panel
127
-
128
- def rerun():
129
- st.rerun()
130
-
131
- metrics_selected='revenue'
132
-
133
- file_selected = (
134
- f"metrics_level_data\Overview_data_test_panel@#revenue.xlsx"
135
- )
136
- panel_list = panel_fetch(file_selected)
137
-
138
- if "selected_markets" not in st.session_state:
139
- st.session_state['selected_markets']='DMA1'
140
-
141
-
142
- st.header('Overview of previous spends')
143
-
144
- selected_market= st.selectbox(
145
- "Select Markets",
146
- ["Total Market"] + panel_list
147
- )
148
-
149
-
150
-
151
- initialize_data(target_col,selected_market)
152
- scenario = st.session_state['scenario']
153
- raw_df = st.session_state['raw_df']
154
- # st.write(scenario.actual_total_spends)
155
- # st.write(scenario.actual_total_sales)
156
- columns = st.columns((1,1,3))
157
-
158
- with columns[0]:
159
- st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
160
- ###print(f"##################### {scenario.actual_total_sales} ##################")
161
- with columns[1]:
162
- st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales)))
163
-
164
-
165
- actual_summary_df = create_channel_summary(scenario)
166
- actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
167
-
168
- columns = st.columns((2,1))
169
- #with columns[0]:
170
- with st.expander('Channel wise overview'):
171
- st.markdown(actual_summary_df.style.set_table_styles(
172
- [{
173
- 'selector': 'th',
174
- 'props': [('background-color', '#FFFFF')]
175
- },
176
- {
177
- 'selector' : 'tr:nth-child(even)',
178
- 'props' : [('background-color', '#FFFFF')]
179
- }]).to_html(), unsafe_allow_html=True)
180
-
181
- st.markdown("<hr>",unsafe_allow_html=True)
182
- ##############################
183
-
184
- st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
185
- st.markdown("<hr>",unsafe_allow_html=True)
186
-
187
-
188
- ################################3
189
- st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
190
- st.markdown("<hr>",unsafe_allow_html=True)
191
- #######################################
192
-
193
- selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
194
- selected_channel = scenario.channels.get(selected_channel_name,None)
195
-
196
- st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
197
-
198
- st.markdown("<hr>",unsafe_allow_html=True)
199
-
200
- # elif auth_status == False:
201
- # st.error('Username/Password is incorrect')
202
-
203
- # if auth_status != True:
204
- # try:
205
- # username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
206
- # if username_forgot_pw:
207
- # st.success('New password sent securely')
208
- # # Random password to be transferred to user securely
209
- # elif username_forgot_pw == False:
210
- # st.error('Username not found')
211
- # except Exception as e:
212
- # st.error(e)
 
1
+ '''
2
+ MMO Build Sprint 3
3
+ additions : contributions calculated using tuned Mixed LM model
4
+ pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
5
+
6
+ MMO Build Sprint 4
7
+ additions : response metrics selection
8
+ pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
9
+ '''
10
+
11
+ import streamlit as st
12
+ import pandas as pd
13
+ from sklearn.preprocessing import MinMaxScaler
14
+ import pickle
15
+
16
+ from utilities import load_authenticator
17
+
18
+ from utilities_with_panel import (set_header,
19
+ overview_test_data_prep_panel,
20
+ overview_test_data_prep_nonpanel,
21
+ initialize_data,
22
+ load_local_css,
23
+ create_channel_summary,
24
+ create_contribution_pie,
25
+ create_contribuion_stacked_plot,
26
+ create_channel_spends_sales_plot,
27
+ format_numbers,
28
+ channel_name_formating)
29
+
30
+ import plotly.graph_objects as go
31
+ import streamlit_authenticator as stauth
32
+ import yaml
33
+ from yaml import SafeLoader
34
+ import time
35
+
36
+ st.set_page_config(layout='wide')
37
+ load_local_css('styles.css')
38
+ set_header()
39
+
40
+
41
+ def get_random_effects(media_data, panel_col, mdf):
42
+ random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
43
+
44
+ for i, market in enumerate(media_data[panel_col].unique()):
45
+ print(i, end='\r')
46
+ intercept = mdf.random_effects[market].values[0]
47
+ random_eff_df.loc[i, 'random_effect'] = intercept
48
+ random_eff_df.loc[i, panel_col] = market
49
+
50
+ return random_eff_df
51
+
52
+
53
+ def process_train_and_test(train, test, features, panel_col, target_col):
54
+ X1 = train[features]
55
+
56
+ ss = MinMaxScaler()
57
+ X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
58
+
59
+ X1[panel_col] = train[panel_col]
60
+ X1[target_col] = train[target_col]
61
+
62
+ if test is not None:
63
+ X2 = test[features]
64
+ X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
65
+ X2[panel_col] = test[panel_col]
66
+ X2[target_col] = test[target_col]
67
+ return X1, X2
68
+ return X1
69
+
70
+ def mdf_predict(X_df, mdf, random_eff_df) :
71
+ X=X_df.copy()
72
+ X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
73
+ X['pred_fixed_effect'] = mdf.predict(X)
74
+
75
+ X['pred'] = X['pred_fixed_effect'] + X['random_effect']
76
+ X.to_csv('Test/merged_df_contri.csv',index=False)
77
+ X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
78
+
79
+ return X
80
+
81
+
82
+ target_col='Revenue'
83
+ target='Revenue'
84
+
85
+ # is_panel=False
86
+ # is_panel = st.session_state['is_panel']
87
+ #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
88
+ panel_col='Panel'
89
+ date_col = 'date'
90
+
91
+ #st.write(media_data)
92
+
93
+ is_panel = True
94
+
95
+ # panel_col='markets'
96
+ date_col = 'date'
97
+ for k, v in st.session_state.items():
98
+
99
+ if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
100
+ st.session_state[k] = v
101
+
102
+ authenticator = st.session_state.get('authenticator')
103
+
104
+ if authenticator is None:
105
+ authenticator = load_authenticator()
106
+
107
+ name, authentication_status, username = authenticator.login('Login', 'main')
108
+ auth_status = st.session_state['authentication_status']
109
+
110
+ if auth_status:
111
+ authenticator.logout('Logout', 'main')
112
+
113
+ is_state_initiaized = st.session_state.get('initialized',False)
114
+ if not is_state_initiaized:
115
+ a=1
116
+
117
+ def panel_fetch(file_selected):
118
+ raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
119
+
120
+ if "Panel" in raw_data_mmm_df.columns:
121
+ panel = list(set(raw_data_mmm_df["Panel"]))
122
+ else:
123
+ raw_data_mmm_df = None
124
+ panel = None
125
+
126
+ return panel
127
+
128
+ def rerun():
129
+ st.rerun()
130
+
131
+ metrics_selected='revenue'
132
+
133
+ file_selected = (
134
+ f"Overview_data_test_panel@#revenue.xlsx"
135
+ )
136
+ panel_list = panel_fetch(file_selected)
137
+
138
+ if "selected_markets" not in st.session_state:
139
+ st.session_state['selected_markets']='DMA1'
140
+
141
+
142
+ st.header('Overview of previous spends')
143
+
144
+ selected_market= st.selectbox(
145
+ "Select Markets",
146
+ ["Total Market"] + panel_list
147
+ )
148
+
149
+
150
+
151
+ initialize_data(target_col,selected_market)
152
+ scenario = st.session_state['scenario']
153
+ raw_df = st.session_state['raw_df']
154
+ # st.write(scenario.actual_total_spends)
155
+ # st.write(scenario.actual_total_sales)
156
+ columns = st.columns((1,1,3))
157
+
158
+ with columns[0]:
159
+ st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
160
+ ###print(f"##################### {scenario.actual_total_sales} ##################")
161
+ with columns[1]:
162
+ st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales)))
163
+
164
+
165
+ actual_summary_df = create_channel_summary(scenario)
166
+ actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
167
+
168
+ columns = st.columns((2,1))
169
+ #with columns[0]:
170
+ with st.expander('Channel wise overview'):
171
+ st.markdown(actual_summary_df.style.set_table_styles(
172
+ [{
173
+ 'selector': 'th',
174
+ 'props': [('background-color', '#FFFFF')]
175
+ },
176
+ {
177
+ 'selector' : 'tr:nth-child(even)',
178
+ 'props' : [('background-color', '#FFFFF')]
179
+ }]).to_html(), unsafe_allow_html=True)
180
+
181
+ st.markdown("<hr>",unsafe_allow_html=True)
182
+ ##############################
183
+
184
+ st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
185
+ st.markdown("<hr>",unsafe_allow_html=True)
186
+
187
+
188
+ ################################3
189
+ st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
190
+ st.markdown("<hr>",unsafe_allow_html=True)
191
+ #######################################
192
+
193
+ selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
194
+ selected_channel = scenario.channels.get(selected_channel_name,None)
195
+
196
+ st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
197
+
198
+ st.markdown("<hr>",unsafe_allow_html=True)
199
+
200
+ # elif auth_status == False:
201
+ # st.error('Username/Password is incorrect')
202
+
203
+ # if auth_status != True:
204
+ # try:
205
+ # username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
206
+ # if username_forgot_pw:
207
+ # st.success('New password sent securely')
208
+ # # Random password to be transferred to user securely
209
+ # elif username_forgot_pw == False:
210
+ # st.error('Username not found')
211
+ # except Exception as e:
212
+ # st.error(e)