Update pages/7_Build_Response_Curves.py
Browse files- pages/7_Build_Response_Curves.py +212 -212
pages/7_Build_Response_Curves.py
CHANGED
@@ -1,213 +1,213 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import plotly.express as px
|
3 |
-
import numpy as np
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
from utilities_with_panel import channel_name_formating, load_authenticator, initialize_data
|
6 |
-
from sklearn.metrics import r2_score
|
7 |
-
from collections import OrderedDict
|
8 |
-
from classes import class_from_dict,class_to_dict
|
9 |
-
import pickle
|
10 |
-
import json
|
11 |
-
import pandas as pd
|
12 |
-
from utilities import (
|
13 |
-
load_local_css,
|
14 |
-
set_header,
|
15 |
-
channel_name_formating,
|
16 |
-
)
|
17 |
-
|
18 |
-
for k, v in st.session_state.items():
|
19 |
-
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
20 |
-
st.session_state[k] = v
|
21 |
-
|
22 |
-
def s_curve(x,K,b,a,x0):
|
23 |
-
return K / (1 + b*np.exp(-a*(x-x0)))
|
24 |
-
|
25 |
-
def save_scenario(scenario_name):
|
26 |
-
"""
|
27 |
-
Save the current scenario with the mentioned name in the session state
|
28 |
-
|
29 |
-
Parameters
|
30 |
-
----------
|
31 |
-
scenario_name
|
32 |
-
Name of the scenario to be saved
|
33 |
-
"""
|
34 |
-
if 'saved_scenarios' not in st.session_state:
|
35 |
-
st.session_state = OrderedDict()
|
36 |
-
|
37 |
-
#st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
|
38 |
-
st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario'])
|
39 |
-
st.session_state['scenario_input'] = ""
|
40 |
-
print(type(st.session_state['saved_scenarios']))
|
41 |
-
with open('../saved_scenarios.pkl', 'wb') as f:
|
42 |
-
pickle.dump(st.session_state['saved_scenarios'],f)
|
43 |
-
|
44 |
-
|
45 |
-
def reset_curve_parameters():
|
46 |
-
del st.session_state['K']
|
47 |
-
del st.session_state['b']
|
48 |
-
del st.session_state['a']
|
49 |
-
del st.session_state['x0']
|
50 |
-
|
51 |
-
def update_response_curve():
|
52 |
-
# st.session_state['rcs'][selected_channel_name]['K'] = st.session_state['K']
|
53 |
-
# st.session_state['rcs'][selected_channel_name]['b'] = st.session_state['b']
|
54 |
-
# st.session_state['rcs'][selected_channel_name]['a'] = st.session_state['a']
|
55 |
-
# st.session_state['rcs'][selected_channel_name]['x0'] = st.session_state['x0']
|
56 |
-
# rcs = st.session_state['rcs']
|
57 |
-
_channel_class = st.session_state['scenario'].channels[selected_channel_name]
|
58 |
-
_channel_class.update_response_curves({
|
59 |
-
'K' : st.session_state['K'],
|
60 |
-
'b' : st.session_state['b'],
|
61 |
-
'a' : st.session_state['a'],
|
62 |
-
'x0' : st.session_state['x0']})
|
63 |
-
|
64 |
-
|
65 |
-
# authenticator = st.session_state.get('authenticator')
|
66 |
-
# if authenticator is None:
|
67 |
-
# authenticator = load_authenticator()
|
68 |
-
|
69 |
-
# name, authentication_status, username = authenticator.login('Login', 'main')
|
70 |
-
# auth_status = st.session_state.get('authentication_status')
|
71 |
-
|
72 |
-
# if auth_status == True:
|
73 |
-
# is_state_initiaized = st.session_state.get('initialized',False)
|
74 |
-
# if not is_state_initiaized:
|
75 |
-
# print("Scenario page state reloaded")
|
76 |
-
|
77 |
-
# Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
|
78 |
-
st.set_page_config(layout='wide')
|
79 |
-
load_local_css('styles.css')
|
80 |
-
set_header()
|
81 |
-
def panel_fetch(file_selected):
|
82 |
-
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
83 |
-
|
84 |
-
if "Panel" in raw_data_mmm_df.columns:
|
85 |
-
panel = list(set(raw_data_mmm_df["Panel"]))
|
86 |
-
else:
|
87 |
-
raw_data_mmm_df = None
|
88 |
-
panel = None
|
89 |
-
|
90 |
-
return panel
|
91 |
-
|
92 |
-
metrics_selected='
|
93 |
-
|
94 |
-
file_selected = (
|
95 |
-
f"Overview_data_test_panel@#{metrics_selected}.xlsx"
|
96 |
-
)
|
97 |
-
panel_list = panel_fetch(file_selected)
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics']!=[]:
|
102 |
-
sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
|
103 |
-
target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
|
104 |
-
else :
|
105 |
-
sel_target_col = 'Total Approved Accounts - Revenue'
|
106 |
-
target_col = 'total_approved_accounts_revenue'
|
107 |
-
|
108 |
-
st.subheader("Build response curves")
|
109 |
-
|
110 |
-
|
111 |
-
st.session_state['selected_markets']= st.selectbox(
|
112 |
-
"Select Markets",
|
113 |
-
["Total Market"] + panel_list,
|
114 |
-
index=0,
|
115 |
-
)
|
116 |
-
initialize_data(target_col,st.session_state['selected_markets'])
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
channels_list = st.session_state['channels_list']
|
121 |
-
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'], format_func=channel_name_formating,on_change=reset_curve_parameters)
|
122 |
-
|
123 |
-
rcs = {}
|
124 |
-
for channel_name in channels_list:
|
125 |
-
rcs[channel_name] = st.session_state['scenario'].channels[channel_name].response_curve_params
|
126 |
-
# rcs = st.session_state['rcs']
|
127 |
-
|
128 |
-
|
129 |
-
if 'K' not in st.session_state:
|
130 |
-
st.session_state['K'] = rcs[selected_channel_name]['K']
|
131 |
-
if 'b' not in st.session_state:
|
132 |
-
st.session_state['b'] = rcs[selected_channel_name]['b']
|
133 |
-
if 'a' not in st.session_state:
|
134 |
-
st.session_state['a'] = rcs[selected_channel_name]['a']
|
135 |
-
if 'x0' not in st.session_state:
|
136 |
-
st.session_state['x0'] = rcs[selected_channel_name]['x0']
|
137 |
-
|
138 |
-
x = st.session_state['actual_input_df'][selected_channel_name].values
|
139 |
-
y = st.session_state['actual_contribution_df'][selected_channel_name].values
|
140 |
-
|
141 |
-
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
|
142 |
-
|
143 |
-
# fig = px.scatter(x, s_curve(x/10**power,
|
144 |
-
# st.session_state['K'],
|
145 |
-
# st.session_state['b'],
|
146 |
-
# st.session_state['a'],
|
147 |
-
# st.session_state['x0']))
|
148 |
-
|
149 |
-
fig = px.scatter(x=x, y=y)
|
150 |
-
fig.add_trace(go.Scatter(x=sorted(x), y=s_curve(sorted(x)/10**power,st.session_state['K'],
|
151 |
-
st.session_state['b'],
|
152 |
-
st.session_state['a'],
|
153 |
-
st.session_state['x0']),
|
154 |
-
line=dict(color='red')))
|
155 |
-
|
156 |
-
fig.update_layout(title_text="Response Curve",showlegend=False)
|
157 |
-
fig.update_annotations(font_size=10)
|
158 |
-
fig.update_xaxes(title='Spends')
|
159 |
-
fig.update_yaxes(title=sel_target_col)
|
160 |
-
|
161 |
-
st.plotly_chart(fig,use_container_width=True)
|
162 |
-
|
163 |
-
r2 = r2_score(y, s_curve(x / 10**power,
|
164 |
-
st.session_state['K'],
|
165 |
-
st.session_state['b'],
|
166 |
-
st.session_state['a'],
|
167 |
-
st.session_state['x0']))
|
168 |
-
|
169 |
-
st.metric('R2',round(r2,2))
|
170 |
-
columns = st.columns(4)
|
171 |
-
|
172 |
-
with columns[0]:
|
173 |
-
st.number_input('K',key='K',format="%0.5f")
|
174 |
-
with columns[1]:
|
175 |
-
st.number_input('b',key='b',format="%0.5f")
|
176 |
-
with columns[2]:
|
177 |
-
st.number_input('a',key='a',step=0.0001,format="%0.5f")
|
178 |
-
with columns[3]:
|
179 |
-
st.number_input('x0',key='x0',format="%0.5f")
|
180 |
-
|
181 |
-
|
182 |
-
st.button('Update parameters',on_click=update_response_curve)
|
183 |
-
st.button('Reset parameters',on_click=reset_curve_parameters)
|
184 |
-
scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed')
|
185 |
-
st.button('Save', on_click=lambda : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0)
|
186 |
-
|
187 |
-
file_name = st.text_input('rcs download file name', key='file_name_input',placeholder='file name',label_visibility='collapsed')
|
188 |
-
st.download_button(
|
189 |
-
label="Download response curves",
|
190 |
-
data=json.dumps(rcs),
|
191 |
-
file_name=f"{file_name}.json",
|
192 |
-
mime="application/json",
|
193 |
-
disabled= len(file_name) == 0,
|
194 |
-
)
|
195 |
-
|
196 |
-
|
197 |
-
def s_curve_derivative(x, K, b, a, x0):
|
198 |
-
# Derivative of the S-curve function
|
199 |
-
return a * b * K * np.exp(-a * (x - x0)) / ((1 + b * np.exp(-a * (x - x0))) ** 2)
|
200 |
-
|
201 |
-
# Parameters of the S-curve
|
202 |
-
K = st.session_state['K']
|
203 |
-
b = st.session_state['b']
|
204 |
-
a = st.session_state['a']
|
205 |
-
x0 = st.session_state['x0']
|
206 |
-
|
207 |
-
# Optimized spend value obtained from the tool
|
208 |
-
optimized_spend = st.number_input('value of x') # Replace this with your optimized spend value
|
209 |
-
|
210 |
-
# Calculate the slope at the optimized spend value
|
211 |
-
slope_at_optimized_spend = s_curve_derivative(optimized_spend, K, b, a, x0)
|
212 |
-
|
213 |
st.write("Slope ", slope_at_optimized_spend)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import plotly.express as px
|
3 |
+
import numpy as np
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from utilities_with_panel import channel_name_formating, load_authenticator, initialize_data
|
6 |
+
from sklearn.metrics import r2_score
|
7 |
+
from collections import OrderedDict
|
8 |
+
from classes import class_from_dict,class_to_dict
|
9 |
+
import pickle
|
10 |
+
import json
|
11 |
+
import pandas as pd
|
12 |
+
from utilities import (
|
13 |
+
load_local_css,
|
14 |
+
set_header,
|
15 |
+
channel_name_formating,
|
16 |
+
)
|
17 |
+
|
18 |
+
for k, v in st.session_state.items():
|
19 |
+
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
20 |
+
st.session_state[k] = v
|
21 |
+
|
22 |
+
def s_curve(x,K,b,a,x0):
|
23 |
+
return K / (1 + b*np.exp(-a*(x-x0)))
|
24 |
+
|
25 |
+
def save_scenario(scenario_name):
|
26 |
+
"""
|
27 |
+
Save the current scenario with the mentioned name in the session state
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
scenario_name
|
32 |
+
Name of the scenario to be saved
|
33 |
+
"""
|
34 |
+
if 'saved_scenarios' not in st.session_state:
|
35 |
+
st.session_state = OrderedDict()
|
36 |
+
|
37 |
+
#st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
|
38 |
+
st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario'])
|
39 |
+
st.session_state['scenario_input'] = ""
|
40 |
+
print(type(st.session_state['saved_scenarios']))
|
41 |
+
with open('../saved_scenarios.pkl', 'wb') as f:
|
42 |
+
pickle.dump(st.session_state['saved_scenarios'],f)
|
43 |
+
|
44 |
+
|
45 |
+
def reset_curve_parameters():
|
46 |
+
del st.session_state['K']
|
47 |
+
del st.session_state['b']
|
48 |
+
del st.session_state['a']
|
49 |
+
del st.session_state['x0']
|
50 |
+
|
51 |
+
def update_response_curve():
|
52 |
+
# st.session_state['rcs'][selected_channel_name]['K'] = st.session_state['K']
|
53 |
+
# st.session_state['rcs'][selected_channel_name]['b'] = st.session_state['b']
|
54 |
+
# st.session_state['rcs'][selected_channel_name]['a'] = st.session_state['a']
|
55 |
+
# st.session_state['rcs'][selected_channel_name]['x0'] = st.session_state['x0']
|
56 |
+
# rcs = st.session_state['rcs']
|
57 |
+
_channel_class = st.session_state['scenario'].channels[selected_channel_name]
|
58 |
+
_channel_class.update_response_curves({
|
59 |
+
'K' : st.session_state['K'],
|
60 |
+
'b' : st.session_state['b'],
|
61 |
+
'a' : st.session_state['a'],
|
62 |
+
'x0' : st.session_state['x0']})
|
63 |
+
|
64 |
+
|
65 |
+
# authenticator = st.session_state.get('authenticator')
|
66 |
+
# if authenticator is None:
|
67 |
+
# authenticator = load_authenticator()
|
68 |
+
|
69 |
+
# name, authentication_status, username = authenticator.login('Login', 'main')
|
70 |
+
# auth_status = st.session_state.get('authentication_status')
|
71 |
+
|
72 |
+
# if auth_status == True:
|
73 |
+
# is_state_initiaized = st.session_state.get('initialized',False)
|
74 |
+
# if not is_state_initiaized:
|
75 |
+
# print("Scenario page state reloaded")
|
76 |
+
|
77 |
+
# Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default
|
78 |
+
st.set_page_config(layout='wide')
|
79 |
+
load_local_css('styles.css')
|
80 |
+
set_header()
|
81 |
+
def panel_fetch(file_selected):
|
82 |
+
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
83 |
+
|
84 |
+
if "Panel" in raw_data_mmm_df.columns:
|
85 |
+
panel = list(set(raw_data_mmm_df["Panel"]))
|
86 |
+
else:
|
87 |
+
raw_data_mmm_df = None
|
88 |
+
panel = None
|
89 |
+
|
90 |
+
return panel
|
91 |
+
|
92 |
+
metrics_selected='revenue'
|
93 |
+
|
94 |
+
file_selected = (
|
95 |
+
f"Overview_data_test_panel@#{metrics_selected}.xlsx"
|
96 |
+
)
|
97 |
+
panel_list = panel_fetch(file_selected)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics']!=[]:
|
102 |
+
sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics'])
|
103 |
+
target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_")
|
104 |
+
else :
|
105 |
+
sel_target_col = 'Total Approved Accounts - Revenue'
|
106 |
+
target_col = 'total_approved_accounts_revenue'
|
107 |
+
|
108 |
+
st.subheader("Build response curves")
|
109 |
+
|
110 |
+
|
111 |
+
st.session_state['selected_markets']= st.selectbox(
|
112 |
+
"Select Markets",
|
113 |
+
["Total Market"] + panel_list,
|
114 |
+
index=0,
|
115 |
+
)
|
116 |
+
initialize_data(target_col,st.session_state['selected_markets'])
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
channels_list = st.session_state['channels_list']
|
121 |
+
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'], format_func=channel_name_formating,on_change=reset_curve_parameters)
|
122 |
+
|
123 |
+
rcs = {}
|
124 |
+
for channel_name in channels_list:
|
125 |
+
rcs[channel_name] = st.session_state['scenario'].channels[channel_name].response_curve_params
|
126 |
+
# rcs = st.session_state['rcs']
|
127 |
+
|
128 |
+
|
129 |
+
if 'K' not in st.session_state:
|
130 |
+
st.session_state['K'] = rcs[selected_channel_name]['K']
|
131 |
+
if 'b' not in st.session_state:
|
132 |
+
st.session_state['b'] = rcs[selected_channel_name]['b']
|
133 |
+
if 'a' not in st.session_state:
|
134 |
+
st.session_state['a'] = rcs[selected_channel_name]['a']
|
135 |
+
if 'x0' not in st.session_state:
|
136 |
+
st.session_state['x0'] = rcs[selected_channel_name]['x0']
|
137 |
+
|
138 |
+
x = st.session_state['actual_input_df'][selected_channel_name].values
|
139 |
+
y = st.session_state['actual_contribution_df'][selected_channel_name].values
|
140 |
+
|
141 |
+
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
|
142 |
+
|
143 |
+
# fig = px.scatter(x, s_curve(x/10**power,
|
144 |
+
# st.session_state['K'],
|
145 |
+
# st.session_state['b'],
|
146 |
+
# st.session_state['a'],
|
147 |
+
# st.session_state['x0']))
|
148 |
+
|
149 |
+
fig = px.scatter(x=x, y=y)
|
150 |
+
fig.add_trace(go.Scatter(x=sorted(x), y=s_curve(sorted(x)/10**power,st.session_state['K'],
|
151 |
+
st.session_state['b'],
|
152 |
+
st.session_state['a'],
|
153 |
+
st.session_state['x0']),
|
154 |
+
line=dict(color='red')))
|
155 |
+
|
156 |
+
fig.update_layout(title_text="Response Curve",showlegend=False)
|
157 |
+
fig.update_annotations(font_size=10)
|
158 |
+
fig.update_xaxes(title='Spends')
|
159 |
+
fig.update_yaxes(title=sel_target_col)
|
160 |
+
|
161 |
+
st.plotly_chart(fig,use_container_width=True)
|
162 |
+
|
163 |
+
r2 = r2_score(y, s_curve(x / 10**power,
|
164 |
+
st.session_state['K'],
|
165 |
+
st.session_state['b'],
|
166 |
+
st.session_state['a'],
|
167 |
+
st.session_state['x0']))
|
168 |
+
|
169 |
+
st.metric('R2',round(r2,2))
|
170 |
+
columns = st.columns(4)
|
171 |
+
|
172 |
+
with columns[0]:
|
173 |
+
st.number_input('K',key='K',format="%0.5f")
|
174 |
+
with columns[1]:
|
175 |
+
st.number_input('b',key='b',format="%0.5f")
|
176 |
+
with columns[2]:
|
177 |
+
st.number_input('a',key='a',step=0.0001,format="%0.5f")
|
178 |
+
with columns[3]:
|
179 |
+
st.number_input('x0',key='x0',format="%0.5f")
|
180 |
+
|
181 |
+
|
182 |
+
st.button('Update parameters',on_click=update_response_curve)
|
183 |
+
st.button('Reset parameters',on_click=reset_curve_parameters)
|
184 |
+
scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed')
|
185 |
+
st.button('Save', on_click=lambda : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0)
|
186 |
+
|
187 |
+
file_name = st.text_input('rcs download file name', key='file_name_input',placeholder='file name',label_visibility='collapsed')
|
188 |
+
st.download_button(
|
189 |
+
label="Download response curves",
|
190 |
+
data=json.dumps(rcs),
|
191 |
+
file_name=f"{file_name}.json",
|
192 |
+
mime="application/json",
|
193 |
+
disabled= len(file_name) == 0,
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
def s_curve_derivative(x, K, b, a, x0):
|
198 |
+
# Derivative of the S-curve function
|
199 |
+
return a * b * K * np.exp(-a * (x - x0)) / ((1 + b * np.exp(-a * (x - x0))) ** 2)
|
200 |
+
|
201 |
+
# Parameters of the S-curve
|
202 |
+
K = st.session_state['K']
|
203 |
+
b = st.session_state['b']
|
204 |
+
a = st.session_state['a']
|
205 |
+
x0 = st.session_state['x0']
|
206 |
+
|
207 |
+
# Optimized spend value obtained from the tool
|
208 |
+
optimized_spend = st.number_input('value of x') # Replace this with your optimized spend value
|
209 |
+
|
210 |
+
# Calculate the slope at the optimized spend value
|
211 |
+
slope_at_optimized_spend = s_curve_derivative(optimized_spend, K, b, a, x0)
|
212 |
+
|
213 |
st.write("Slope ", slope_at_optimized_spend)
|