Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import numpy as np | |
import pickle | |
import statsmodels.api as sm | |
import numpy as np | |
from sklearn.metrics import mean_absolute_error, r2_score,mean_absolute_percentage_error | |
from sklearn.preprocessing import MinMaxScaler | |
import matplotlib.pyplot as plt | |
from statsmodels.stats.outliers_influence import variance_inflation_factor | |
from plotly.subplots import make_subplots | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
from datetime import datetime | |
import seaborn as sns | |
def calculate_discount(promo_price_series, non_promo_price_series): | |
# Calculate the 4-week moving average of non-promo price | |
window_size = 4 | |
base_price = non_promo_price_series.rolling(window=window_size).mean() | |
# Calculate discount_raw | |
discount_raw_series = (1 - promo_price_series / base_price) * 100 | |
# Calculate discount_final | |
discount_final_series = discount_raw_series.where(discount_raw_series >= 5, 0) | |
return base_price, discount_raw_series, discount_final_series | |
def create_dual_axis_line_chart(date_series, promo_price_series, non_promo_price_series, base_price_series, discount_series): | |
# Create traces for the primary axis (price vars) | |
trace1 = go.Scatter( | |
x=date_series, | |
y=promo_price_series, | |
name='Promo Price', | |
yaxis='y1' | |
) | |
trace2 = go.Scatter( | |
x=date_series, | |
y=non_promo_price_series, | |
name='Non-Promo Price', | |
yaxis='y1' | |
) | |
trace3 = go.Scatter( | |
x=date_series, | |
y=base_price_series, | |
name='Base Price', | |
yaxis='y1' | |
) | |
# Create a trace for the secondary axis (discount) | |
trace4 = go.Scatter( | |
x=date_series, | |
y=discount_series, | |
name='Discount', | |
yaxis='y2' | |
) | |
# Create the layout with dual axes | |
layout = go.Layout( | |
title='Price and Discount Over Time', | |
yaxis=dict( | |
title='Price', | |
side='left' | |
), | |
yaxis2=dict( | |
title='Discount', | |
side='right', | |
overlaying='y', | |
showgrid=False | |
), | |
xaxis=dict(title='Date'), | |
) | |
# Create the figure with the defined traces and layout | |
fig = go.Figure(data=[trace1, trace2, trace3, trace4], layout=layout) | |
return fig | |
def to_percentage(value): | |
return f'{value * 100:.1f}%' | |
def plot_actual_vs_predicted(date, y, predicted_values, model,target_column=None, flag=None, repeat_all_years=False, is_panel=False): | |
if flag is not None : | |
fig = make_subplots(specs=[[{"secondary_y": True}]]) | |
else : | |
fig = go.Figure() | |
if is_panel : | |
df=pd.DataFrame() | |
df['date'] = date | |
df['Actual'] = y | |
df['Predicted'] = predicted_values | |
df_agg = df.groupby('date').agg({'Actual':'sum', 'Predicted':'sum'}).reset_index() | |
df_agg.columns = ['date', 'Actual', 'Predicted'] | |
assert len(df_agg) == pd.Series(date).nunique() | |
# date = df_agg['date'] | |
# y = df_agg['Actual'] | |
# predicted_values = df_agg['Predicted'] | |
# ymax = df_agg['Actual'].max() # Sprint3 - ymax to set y value for flag | |
fig.add_trace(go.Scatter(x=df_agg['date'], y=df_agg['Actual'], mode='lines', name='Actual', line=dict(color='#08083B'))) | |
fig.add_trace(go.Scatter(x=df_agg['date'], y=df_agg['Predicted'], mode='lines', name='Predicted', line=dict(color='#11B6BD'))) | |
else : | |
fig.add_trace(go.Scatter(x=date, y=y, mode='lines', name='Actual', line=dict(color='#08083B'))) | |
fig.add_trace(go.Scatter(x=date, y=predicted_values, mode='lines', name='Predicted', line=dict(color='#11B6BD'))) | |
line_values=[] | |
if flag: | |
min_date, max_date = flag[0], flag[1] | |
min_week = datetime.strptime(str(min_date), "%Y-%m-%d").strftime("%U") | |
max_week = datetime.strptime(str(max_date), "%Y-%m-%d").strftime("%U") | |
month=pd.to_datetime(min_date).month | |
day=pd.to_datetime(min_date).day | |
#st.write(pd.to_datetime(min_date).week) | |
#st.write(min_week) | |
# Initialize an empty list to store line values | |
# Sprint3 change : put flags to secondary axis, & made their y value to 1 instead of 5M | |
if repeat_all_years: | |
#line_values=list(pd.to_datetime((pd.Series(date)).dt.week).map(lambda x: 10000 if x==min_week else 0 )) | |
#st.write(pd.Series(date).map(lambda x: pd.Timestamp(x).week)) | |
line_values=list(pd.Series(date).map(lambda x: 1 if (pd.Timestamp(x).week >=int(min_week)) & (pd.Timestamp(x).week <=int(max_week)) else 0)) | |
assert len(line_values) == len(date) | |
#st.write(line_values) | |
fig.add_trace(go.Scatter(x=date, y=line_values, mode='lines', name='Flag', line=dict(color='#FF5733')),secondary_y=True) | |
else: | |
line_values = [] | |
line_values = list(pd.Series(date).map(lambda x: 1 if (pd.Timestamp(x) >= pd.Timestamp(min_date)) and (pd.Timestamp(x) <= pd.Timestamp(max_date)) else 0)) | |
#st.write(line_values) | |
fig.add_trace(go.Scatter(x=date, y=line_values, mode='lines', name='Flag', line=dict(color='#FF5733')),secondary_y=True) | |
# Calculate MAPE | |
mape = mean_absolute_percentage_error(y, predicted_values) | |
# Calculate AdjR2 # Assuming X is your feature matrix | |
r2 = r2_score(y, predicted_values) | |
adjr2 = 1 - (1 - r2) * (len(y) - 1) / (len(y) - len(model.fe_params) - 1) | |
# Create a table to display the metrics | |
metrics_table = pd.DataFrame({ | |
'Metric': ['MAPE', 'R-squared', 'AdjR-squared'], | |
'Value': [mape, r2, adjr2] | |
}) | |
# st.write(metrics_table) | |
fig.update_layout( | |
xaxis=dict(title='Date'), | |
yaxis=dict(title=target_column), | |
xaxis_tickangle=-30 | |
) | |
fig.add_annotation( | |
text=f"MAPE: {mape*100:0.1f}%, Adjr2: {adjr2 *100:.1f}%", | |
xref="paper", | |
yref="paper", | |
x=0.95, # Adjust these values to position the annotation | |
y=1.2, | |
showarrow=False, | |
) | |
# print("{}{}"*20, len(line_values)) | |
#metrics_table.set_index(['Metric'],inplace=True) | |
return metrics_table,line_values, fig | |
def plot_residual_predicted(actual, predicted, df): | |
df_=df.copy() | |
df_['Residuals'] = actual - pd.Series(predicted) | |
df_['StdResidual'] = (df_['Residuals'] - df_['Residuals'].mean()) / df_['Residuals'].std() | |
# Create a Plotly scatter plot | |
fig = px.scatter(df_, x=predicted, y='StdResidual', opacity=0.5,color_discrete_sequence=["#11B6BD"]) | |
# Add horizontal lines | |
fig.add_hline(y=0, line_dash="dash", line_color="darkorange") | |
fig.add_hline(y=2, line_color="red") | |
fig.add_hline(y=-2, line_color="red") | |
fig.update_xaxes(title='Predicted') | |
fig.update_yaxes(title='Standardized Residuals (Actual - Predicted)') | |
# Set the same width and height for both figures | |
fig.update_layout(title='2.3.1 Residuals over Predicted Values', autosize=False, width=600, height=400) | |
return fig | |
def residual_distribution(actual, predicted): | |
Residuals = actual - pd.Series(predicted) | |
# Create a Seaborn distribution plot | |
sns.set(style="whitegrid") | |
plt.figure(figsize=(6, 4)) | |
sns.histplot(Residuals, kde=True, color="#11B6BD") | |
plt.title('2.3.3 Distribution of Residuals') | |
plt.xlabel('Residuals') | |
plt.ylabel('Probability Density') | |
return plt | |
def qqplot(actual, predicted): | |
Residuals = actual - pd.Series(predicted) | |
Residuals = pd.Series(Residuals) | |
Resud_std = (Residuals - Residuals.mean()) / Residuals.std() | |
# Create a QQ plot using Plotly with custom colors | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=sm.ProbPlot(Resud_std).theoretical_quantiles, | |
y=sm.ProbPlot(Resud_std).sample_quantiles, | |
mode='markers', | |
marker=dict(size=5, color="#11B6BD"), | |
name='QQ Plot')) | |
# Add the 45-degree reference line | |
diagonal_line = go.Scatter( | |
x=[-2, 2], # Adjust the x values as needed to fit the range of your data | |
y=[-2, 2], # Adjust the y values accordingly | |
mode='lines', | |
line=dict(color='red'), # Customize the line color and style | |
name=' ' | |
) | |
fig.add_trace(diagonal_line) | |
# Customize the layout | |
fig.update_layout(title='2.3.2 QQ Plot of Residuals',title_x=0.5, autosize=False, width=600, height=400, | |
xaxis_title='Theoretical Quantiles', yaxis_title='Sample Quantiles') | |
return fig | |