Mastercard / dump /1_Transformations_with_panel.py
BlendMMM's picture
Upload 4 files
9d7bf1d verified
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from Eda_functions import format_numbers
import numpy as np
import pickle
from st_aggrid import AgGrid
from st_aggrid import GridOptionsBuilder,GridUpdateMode
from utilities import set_header,load_local_css
from st_aggrid import GridOptionsBuilder
import time
import itertools
import statsmodels.api as sm
import numpy as npc
import re
import itertools
from sklearn.metrics import mean_absolute_error, r2_score,mean_absolute_percentage_error
from sklearn.preprocessing import MinMaxScaler
import os
import matplotlib.pyplot as plt
from statsmodels.stats.outliers_influence import variance_inflation_factor
st.set_option('deprecation.showPyplotGlobalUse', False)
import statsmodels.api as sm
import statsmodels.formula.api as smf
from datetime import datetime
import seaborn as sns
from Data_prep_functions import *
def get_random_effects(media_data, panel_col, mdf):
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
for i, market in enumerate(media_data[panel_col].unique()):
print(i, end='\r')
intercept = mdf.random_effects[market].values[0]
random_eff_df.loc[i, 'random_effect'] = intercept
random_eff_df.loc[i, panel_col] = market
return random_eff_df
def mdf_predict(X, mdf, random_eff_df) :
X['fixed_effect'] = mdf.predict(X)
merged_df=pd.merge(X[[panel_col,target_col]], random_eff_df, on = panel_col, how = 'left')
X['random_effect'] = merged_df['random_effect']
X['pred'] = X['fixed_effect'] + X['random_effect']
return X['pred']
st.set_page_config(
page_title="Model Build",
page_icon=":shark:",
layout="wide",
initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()
st.title('1. Build Your Model')
panel_col= 'markets' # set the panel column
date_col = 'date'
target_col = 'total_approved_accounts_revenue'
media_data=pd.read_csv('upf_data_converted.csv')
media_data.columns=[i.lower().replace('-','').replace(':','').replace("__", "_") for i in media_data.columns]
# st.write(media_data.columns)
media_data.sort_values(date_col, inplace=True)
media_data.reset_index(drop=True,inplace=True)
date=media_data[date_col]
st.session_state['date']=date
revenue=media_data[target_col]
media_data.drop([target_col],axis=1,inplace=True)
media_data.drop([date_col],axis=1,inplace=True)
media_data.reset_index(drop=True,inplace=True)
if st.toggle('Apply Transformations on DMA/Panel Level'):
dma=st.selectbox('Select the Level of data ',[ col for col in media_data.columns if col.lower() in ['dma','panel', 'markets']])
else:
#""" code to aggregate data on date """
dma=None
# dma_dict={ dm:media_data[media_data[dma]==dm] for dm in media_data[dma].unique()}
# st.write(dma_dict)
st.markdown('## Select the Range of Transformations')
columns = st.columns(2)
old_shape=media_data.shape
if "old_shape" not in st.session_state:
st.session_state['old_shape']=old_shape
with columns[0]:
slider_value_adstock = st.slider('Select Adstock Range (only applied to media)', 0.0, 1.0, (0.2, 0.4), step=0.1, format="%.2f")
with columns[1]:
slider_value_lag = st.slider('Select Lag Range (applied to media, seasonal, macroeconomic variables)', 1, 7, (1, 3), step=1)
# with columns[2]:
# slider_value_power=st.slider('Select Power range (only applied to media )',0,4,(1,2),step=1)
# with columns[1]:
# st.number_input('Select the range of half saturation point ',min_value=1,max_value=5)
# st.number_input('Select the range of ')
# Section 1 - Transformations Functions
def lag(data,features,lags,dma=None):
if dma:
transformed_data=pd.concat([data.groupby([dma])[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
transformed_data=transformed_data.fillna(method='bfill')
return pd.concat([transformed_data,data],axis=1)
else:
#''' data should be aggregated on date'''
transformed_data=pd.concat([data[features].shift(lag).add_suffix(f'_lag_{lag}') for lag in lags],axis=1)
transformed_data=transformed_data.fillna(method='bfill')
return pd.concat([transformed_data,data],axis=1)
#adstock
def adstock(df, alphas, cutoff, features,dma=None):
# st.write(features)
if dma:
transformed_data=pd.DataFrame()
for d in df[dma].unique():
dma_sub_df = df[df[dma] == d]
n = len(dma_sub_df)
weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])
X = dma_sub_df[features].to_numpy()
res = pd.DataFrame(np.hstack(weights @ X),
columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
transformed_data=pd.concat([transformed_data,res],axis=0)
transformed_data.reset_index(drop=True,inplace=True)
return pd.concat([transformed_data,df],axis=1)
else:
n = len(df)
weights = np.array([[[alpha**(i-j) if i >= j and j >= i-cutoff else 0. for j in range(n)] for i in range(n)] for alpha in alphas])
X = df[features].to_numpy()
res = pd.DataFrame(np.hstack(weights @ X),
columns=[f'{col}_adstock_{alpha}' for alpha in alphas for col in features])
return pd.concat([res,df],axis=1)
# Section 2 - Begin Transformations
if 'media_data' not in st.session_state:
st.session_state['media_data']=pd.DataFrame()
# variables_to_be_transformed=[col for col in media_data.columns if col.lower() not in ['dma','panel'] ] # change for buckets
variables_to_be_transformed=[col for col in media_data.columns if '_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
# st.write(variables_to_be_transformed)
# st.write(media_data[variables_to_be_transformed].dtypes)
with columns[0]:
if st.button('Apply Transformations'):
with st.spinner('Applying Transformations'):
transformed_data_lag=lag(media_data,features=variables_to_be_transformed,lags=np.arange(slider_value_lag[0],slider_value_lag[1]+1,1),dma=dma)
# variables_to_be_transformed=[col for col in list(transformed_data_lag.columns) if col not in ['Date','DMA','Panel']] #change for buckets
variables_to_be_transformed = [col for col in media_data.columns if
'_clicks' in col.lower() or '_impress' in col.lower()] # srishti - change
transformed_data_adstock=adstock(df=transformed_data_lag, alphas=np.arange(slider_value_adstock[0],slider_value_adstock[1],0.1), cutoff=8, features=variables_to_be_transformed,dma=dma)
# st.success('Done')
st.success("Transformations complete!")
st.write(f'old shape {old_shape}, new shape {transformed_data_adstock.shape}')
# st.write(media_data.head(10))
# st.write(transformed_data_adstock.head(10))
transformed_data_adstock.columns = [c.replace(".","_") for c in transformed_data_adstock.columns] # srishti
# st.write(transformed_data_adstock.columns)
st.session_state['media_data']=transformed_data_adstock # srishti
# with st.spinner('Applying Transformations'):
# time.sleep(2)
# st.success("Transformations complete!")
# if st.session_state['media_data'].shape[1]>old_shape[1]:
# with columns[0]:
# st.write(f'Total no.of variables before transformation: {old_shape[1]}, Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
#st.write(f'Total no.of variables after transformation: {st.session_state["media_data"].shape[1]}')
# Section 3 - Create combinations
# bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','FB: Level Achieved - Tier 1 Impressions',
# ' FB: Level Achieved - Tier 2 Impressions','paid_social_others',
# ' GA App: Will And Cid Pequena Baixo Risco Clicks',
# 'digital_tactic_others',"programmatic"
# ]
# srishti - bucket names changed
bucket=['paid_search', 'kwai','indicacao','infleux', 'influencer','fb_level_achieved_tier_2',
'fb_level_achieved_tier_1','paid_social_others',
'ga_app',
'digital_tactic_others',"programmatic"
]
with columns[1]:
if st.button('Create Combinations of Variables'):
top_3_correlated_features=[]
# for col in st.session_state['media_data'].columns[:19]:
original_cols = [c for c in st.session_state['media_data'].columns if "_clicks" in c.lower() or "_impressions" in c.lower()]
original_cols = [c for c in original_cols if "_lag" not in c.lower() and "_adstock" not in c.lower()]
# st.write(original_cols)
# for col in st.session_state['media_data'].columns[:19]:
for col in original_cols: # srishti - new
corr_df=pd.concat([st.session_state['media_data'].filter(regex=col),
revenue],axis=1).corr()[target_col].iloc[:-1]
top_3_correlated_features.append(list(corr_df.sort_values(ascending=False).head(2).index))
# st.write(col, top_3_correlated_features)
flattened_list = [item for sublist in top_3_correlated_features for item in sublist]
# all_features_set={var:[col for col in flattened_list if var in col] for var in bucket}
all_features_set={var:[col for col in flattened_list if var in col] for var in bucket if len([col for col in flattened_list if var in col])>0} # srishti
channels_all=[values for values in all_features_set.values()]
# st.write(channels_all)
st.session_state['combinations'] = list(itertools.product(*channels_all))
# if 'combinations' not in st.session_state:
# st.session_state['combinations']=combinations_all
st.session_state['final_selection']=st.session_state['combinations']
st.success('Done')
# st.write(f"{len(st.session_state['combinations'])} combinations created")
revenue.reset_index(drop=True,inplace=True)
if 'Model_results' not in st.session_state:
st.session_state['Model_results']={'Model_object':[],
'Model_iteration':[],
'Feature_set':[],
'MAPE':[],
'R2':[],
'ADJR2':[]
}
def reset_model_result_dct():
st.session_state['Model_results']={'Model_object':[],
'Model_iteration':[],
'Feature_set':[],
'MAPE':[],
'R2':[],
'ADJR2':[]
}
# if st.button('Build Model'):
if 'iterations' not in st.session_state:
st.session_state['iterations']=0
# st.write("1",st.session_state["final_selection"])
if 'final_selection' not in st.session_state:
st.session_state['final_selection']=False
save_path = r"Model/"
with columns[1]:
if st.session_state['final_selection']:
st.write(f'Total combinations created {format_numbers(len(st.session_state["final_selection"]))}')
if st.checkbox('Build all iterations'):
iterations=len(st.session_state['final_selection'])
else:
iterations = st.number_input('Select the number of iterations to perform', min_value=0, step=10, value=st.session_state['iterations'],on_change=reset_model_result_dct)
# st.write("iterations=", iterations)
if st.button('Build Model',on_click=reset_model_result_dct):
st.session_state['iterations']=iterations
# st.write("2",st.session_state["final_selection"])
# Section 4 - Model
st.session_state['media_data']=st.session_state['media_data'].fillna(method='ffill')
st.markdown(
'Data Split -- Training Period: May 9th, 2023 - October 5th,2023 , Testing Period: October 6th, 2023 - November 7th, 2023 ')
progress_bar = st.progress(0) # Initialize the progress bar
# time_remaining_text = st.empty() # Create an empty space for time remaining text
start_time = time.time() # Record the start time
progress_text = st.empty()
# time_elapsed_text = st.empty()
# for i, selected_features in enumerate(st.session_state["final_selection"][40000:40000 + int(iterations)]):
# st.write(st.session_state["final_selection"])
# for i, selected_features in enumerate(st.session_state["final_selection"]):
for i, selected_features in enumerate(st.session_state["final_selection"][0:int(iterations)]): # srishti
print("@@@@@@@@@@@@@",i)
df = st.session_state['media_data']
fet = [var for var in selected_features if len(var) > 0]
inp_vars_str = " + ".join(fet) # new
X = df[fet]
y = revenue
ss = MinMaxScaler()
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
# X = sm.add_constant(X)
X['total_approved_accounts_revenue'] = revenue # new
X[panel_col] = df[panel_col]
X_train = X.iloc[:8000]
X_test = X.iloc[8000:]
y_train = y.iloc[:8000]
y_test = y.iloc[8000:]
print(X_train.shape)
# model = sm.OLS(y_train, X_train).fit()
md = smf.mixedlm("total_approved_accounts_revenue ~ {}".format(inp_vars_str),
data=X_train[['total_approved_accounts_revenue'] + fet],
groups=X_train[panel_col])
mdf = md.fit()
predicted_values = mdf.fittedvalues
# st.write(fet)
# positive_coeff=fet
# negetive_coeff=[]
coefficients = mdf.fe_params.to_dict()
model_possitive = [col for col in coefficients.keys() if coefficients[col] > 0]
# st.write(positive_coeff)
# st.write(model_possitive)
pvalues = [var for var in list(mdf.pvalues) if var <= 0.06]
# if (len(model_possitive) / len(selected_features)) > 0.9 and (len(pvalues) / len(selected_features)) >= 0.8:
if (len(model_possitive) / len(selected_features)) > 0 and (len(pvalues) / len(selected_features)) >= 0: # srishti - changed just for testing, revert later
# predicted_values = model.predict(X_train)
mape = mean_absolute_percentage_error(y_train, predicted_values)
r2 = r2_score(y_train, predicted_values)
adjr2 = 1 - (1 - r2) * (len(y_train) - 1) / (len(y_train) - len(selected_features) - 1)
filename = os.path.join(save_path, f"model_{i}.pkl")
with open(filename, "wb") as f:
pickle.dump(mdf, f)
# with open(r"C:\Users\ManojP\Documents\MMM\simopt\Model\model.pkl", 'rb') as file:
# model = pickle.load(file)
st.session_state['Model_results']['Model_object'].append(filename)
st.session_state['Model_results']['Model_iteration'].append(i)
st.session_state['Model_results']['Feature_set'].append(fet)
st.session_state['Model_results']['MAPE'].append(mape)
st.session_state['Model_results']['R2'].append(r2)
st.session_state['Model_results']['ADJR2'].append(adjr2)
current_time = time.time()
time_taken = current_time - start_time
time_elapsed_minutes = time_taken / 60
completed_iterations_text = f"{i + 1}/{iterations}"
progress_bar.progress((i + 1) / int(iterations))
progress_text.text(f'Completed iterations: {completed_iterations_text},Time Elapsed (min): {time_elapsed_minutes:.2f}')
st.write(f'Out of {st.session_state["iterations"]} iterations : {len(st.session_state["Model_results"]["Model_object"])} valid models')
pd.DataFrame(st.session_state['Model_results']).to_csv('model_output.csv')
def to_percentage(value):
return f'{value * 100:.1f}%'
st.title('2. Select Models')
if 'tick' not in st.session_state:
st.session_state['tick']=False
if st.checkbox('Show results of top 10 models (based on MAPE and Adj. R2)',value=st.session_state['tick']):
st.session_state['tick']=True
st.write('Select one model iteration to generate performance metrics for it:')
data=pd.DataFrame(st.session_state['Model_results'])
data.sort_values(by=['MAPE'],ascending=False,inplace=True)
data.drop_duplicates(subset='Model_iteration',inplace=True)
top_10=data.head(10)
top_10['Rank']=np.arange(1,len(top_10)+1,1)
top_10[['MAPE','R2','ADJR2']]=np.round(top_10[['MAPE','R2','ADJR2']],4).applymap(to_percentage)
top_10_table = top_10[['Rank','Model_iteration','MAPE','ADJR2','R2']]
#top_10_table.columns=[['Rank','Model Iteration Index','MAPE','Adjusted R2','R2']]
gd=GridOptionsBuilder.from_dataframe(top_10_table)
gd.configure_pagination(enabled=True)
gd.configure_selection(use_checkbox=True)
gridoptions=gd.build()
table = AgGrid(top_10,gridOptions=gridoptions,update_mode=GridUpdateMode.SELECTION_CHANGED)
selected_rows=table.selected_rows
# if st.session_state["selected_rows"] != selected_rows:
# st.session_state["build_rc_cb"] = False
st.session_state["selected_rows"] = selected_rows
if 'Model' not in st.session_state:
st.session_state['Model']={}
if len(selected_rows)>0:
st.header('2.1 Results Summary')
model_object=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Model_object']
features_set=data[data['Model_iteration']==selected_rows[0]['Model_iteration']]['Feature_set']
with open(str(model_object.values[0]), 'rb') as file:
# print(file)
model = pickle.load(file)
st.write(model.summary())
st.header('2.2 Actual vs. Predicted Plot')
df=st.session_state['media_data']
X=df[features_set.values[0]]
# X = sm.add_constant(X)
y=revenue
ss = MinMaxScaler()
X = pd.DataFrame(ss.fit_transform(X), columns=X.columns)
X['total_approved_accounts_revenue'] = revenue # new
X[panel_col] = df[panel_col]
X_train=X.iloc[:8000]
X_test=X.iloc[8000:]
y_train=y.iloc[:8000]
y_test=y.iloc[8000:]
st.session_state['X']=X_train
st.session_state['features_set']=features_set.values[0]
metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_train, model.fittedvalues, model,target_column='Revenue')
st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
random_eff_df = get_random_effects(media_data, panel_col, model)
st.markdown('## 2.3 Residual Analysis')
columns=st.columns(2)
with columns[0]:
fig=plot_residual_predicted(y_train,model.fittedvalues,X_train)
st.plotly_chart(fig)
with columns[1]:
st.empty()
fig = qqplot(y_train,model.fittedvalues)
st.plotly_chart(fig)
with columns[0]:
fig=residual_distribution(y_train,model.fittedvalues)
st.pyplot(fig)
vif_data = pd.DataFrame()
# X=X.drop('const',axis=1)
vif_data["Variable"] = X_train.columns
vif_data["VIF"] = [variance_inflation_factor(X_train.values, i) for i in range(X_train.shape[1])]
vif_data.sort_values(by=['VIF'],ascending=False,inplace=True)
vif_data=np.round(vif_data)
vif_data['VIF']=vif_data['VIF'].astype(float)
st.header('2.4 Variance Inflation Factor (VIF)')
#st.dataframe(vif_data)
color_mapping = {
'darkgreen': (vif_data['VIF'] < 3),
'orange': (vif_data['VIF'] >= 3) & (vif_data['VIF'] <= 10),
'darkred': (vif_data['VIF'] > 10)
}
# Create a horizontal bar plot
fig, ax = plt.subplots()
fig.set_figwidth(10) # Adjust the width of the figure as needed
# Sort the bars by descending VIF values
vif_data = vif_data.sort_values(by='VIF', ascending=False)
# Iterate through the color mapping and plot bars with corresponding colors
for color, condition in color_mapping.items():
subset = vif_data[condition]
bars = ax.barh(subset["Variable"], subset["VIF"], color=color, label=color)
# Add text annotations on top of the bars
for bar in bars:
width = bar.get_width()
ax.annotate(f'{width:}', xy=(width, bar.get_y() + bar.get_height() / 2), xytext=(5, 0),
textcoords='offset points', va='center')
# Customize the plot
ax.set_xlabel('VIF Values')
#ax.set_title('2.4 Variance Inflation Factor (VIF)')
#ax.legend(loc='upper right')
# Display the plot in Streamlit
st.pyplot(fig)
with st.expander('Results Summary Test data'):
ss = MinMaxScaler()
X_test = pd.DataFrame(ss.fit_transform(X_test), columns=X_test.columns)
st.header('2.2 Actual vs. Predicted Plot')
metrics_table,line,actual_vs_predicted_plot=plot_actual_vs_predicted(date, y_test, mdf_predict(X_test,mdf, random_eff_df), model,target_column='Revenue')
st.plotly_chart(actual_vs_predicted_plot,use_container_width=True)
st.markdown('## 2.3 Residual Analysis')
columns=st.columns(2)
with columns[0]:
fig=plot_residual_predicted(revenue,mdf_predict(X_test,mdf, random_eff_df),X_test)
st.plotly_chart(fig)
with columns[1]:
st.empty()
fig = qqplot(revenue,mdf_predict(X_test,mdf, random_eff_df))
st.plotly_chart(fig)
with columns[0]:
fig=residual_distribution(revenue,mdf_predict(X_test,mdf, random_eff_df))
st.pyplot(fig)
value=False
if st.checkbox('Save this model to tune',key='build_rc_cb'):
mod_name=st.text_input('Enter model name')
if len(mod_name)>0:
st.session_state['Model'][mod_name]={"Model_object":model,'feature_set':st.session_state['features_set'],'X_train':X_train}
st.session_state['X_train']=X_train
st.session_state['X_test']=X_test
st.session_state['y_train']=y_train
st.session_state['y_test']=y_test
with open("best_models.pkl", "wb") as f:
pickle.dump(st.session_state['Model'], f)
st.success('Model saved!, Proceed next page to tune the model')
value=False