""" MMO Build Sprint 3 additions : contributions calculated using tuned Mixed LM model pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model MMO Build Sprint 4 additions : response metrics selection pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model """ import streamlit as st import pandas as pd from sklearn.preprocessing import MinMaxScaler import pickle import os from utilities_with_panel import load_local_css, set_header import yaml from yaml import SafeLoader import sqlite3 from utilities import set_header, load_local_css, update_db, project_selection st.set_page_config(layout="wide") load_local_css("styles.css") set_header() if "username" not in st.session_state: st.session_state["username"] = None if "project_name" not in st.session_state: st.session_state["project_name"] = None if "project_dct" not in st.session_state: project_selection() st.stop() if "bin_dict" not in st.session_state: st.warning("Build and tune a model to proceed") st.stop() if "username" in st.session_state and st.session_state["username"] is not None: st.session_state["bin_dict"]["Panel Level 1"] = st.session_state["bin_dict"].get( "Panel Level 1", [] ) conn = sqlite3.connect( r"DB/User.db", check_same_thread=False ) # connection with sql db c = conn.cursor() if not os.path.exists( os.path.join(st.session_state["project_path"], "tuned_model.pkl") ): st.error("Please save a tuned model") st.stop() if ( "session_state_saved" in st.session_state["project_dct"]["model_tuning"].keys() and st.session_state["project_dct"]["model_tuning"]["session_state_saved"] != [] ): for key in [ "used_response_metrics", "is_tuned_model", "media_data", "X_test_spends", "spends_data" ]: st.session_state[key] = st.session_state["project_dct"]["model_tuning"][ "session_state_saved" ][key] elif ( "session_state_saved" in st.session_state["project_dct"]["model_build"].keys() and st.session_state["project_dct"]["model_build"]["session_state_saved"] != [] ): for key in [ "used_response_metrics", "date", "saved_model_names", "media_data", "X_test_spends", ]: st.session_state[key] = st.session_state["project_dct"]["model_build"][ "session_state_saved" ][key] else: st.error("Please tune a model first") st.session_state["bin_dict"] = st.session_state["project_dct"]["model_build"][ "session_state_saved" ]["bin_dict"] st.session_state["media_data"].columns = [ c.lower() for c in st.session_state["media_data"].columns ] from utilities_with_panel import ( overview_test_data_prep_panel, overview_test_data_prep_nonpanel, initialize_data, create_channel_summary, create_contribution_pie, create_contribuion_stacked_plot, create_channel_spends_sales_plot, format_numbers, channel_name_formating, ) import plotly.graph_objects as go import yaml from yaml import SafeLoader import time def get_random_effects(media_data, panel_col, mdf): random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) for i, market in enumerate(media_data[panel_col].unique()): print(i, end="\r") intercept = mdf.random_effects[market].values[0] random_eff_df.loc[i, "random_effect"] = intercept random_eff_df.loc[i, panel_col] = market return random_eff_df def process_train_and_test(train, test, features, panel_col, target_col): X1 = train[features] ss = MinMaxScaler() X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns) X1[panel_col] = train[panel_col] X1[target_col] = train[target_col] if test is not None: X2 = test[features] X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns) X2[panel_col] = test[panel_col] X2[target_col] = test[target_col] return X1, X2 return X1 def mdf_predict(X_df, mdf, random_eff_df): X = X_df.copy() X = pd.merge( X, random_eff_df[[panel_col, "random_effect"]], on=panel_col, how="left", ) X["pred_fixed_effect"] = mdf.predict(X) X["pred"] = X["pred_fixed_effect"] + X["random_effect"] # X.to_csv("Test/merged_df_contri.csv", index=False) X.drop(columns=["pred_fixed_effect", "random_effect"], inplace=True) return X with open( os.path.join(st.session_state["project_path"], "data_import.pkl"), "rb", ) as f: data = pickle.load(f) # Accessing the loaded objects st.session_state["orig_media_data"] = data["final_df"] # target='Revenue' # is_panel=False # is_panel = st.session_state['is_panel'] # set the panel column # is_panel = True if len(panel_col) > 0 else False # manoj is_panel = False if is_panel: panel_col = [ col.lower() .replace(".", "_") .replace("@", "_") .replace(" ", "_") .replace("-", "") .replace(":", "") .replace("__", "_") for col in st.session_state["bin_dict"]["Panel Level 1"] ][0] date_col = "date" cols1 = st.columns([2, 1]) with cols1[0]: st.markdown(f"**Welcome {st.session_state['username']}**") with cols1[1]: st.markdown(f"**Current Project: {st.session_state['project_name']}**") # Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default st.title("Current Media Performance") # if ( # "used_response_metrics" in st.session_state # and st.session_state["used_response_metrics"] != [] # ): sel_target_col = st.selectbox( "Select the response metric", st.session_state["used_response_metrics"], ) sel_target_col_frmttd = sel_target_col.replace('_', ' ').replace('-', ' ') sel_target_col_frmttd = sel_target_col_frmttd.title() target_col = ( sel_target_col.lower() .replace(" ", "_") .replace("-", "") .replace(":", "") .replace("__", "_") ) target = sel_target_col # Sprint4 - Look through all saved tuned models, only show saved models of the sel resp metric (target_col) # saved_models = st.session_state['saved_model_names'] # Sprint4 - get the model obj of the selected model # st.write(sel_model_dict) # Sprint3 - Contribution if is_panel: # read tuned mixedLM model # if st.session_state["tuned_model"] is not None : if st.session_state["is_tuned_model"][target_col] == True: # Sprint4 with open( os.path.join(st.session_state["project_path"], "tuned_model.pkl"), "rb", ) as file: model_dict = pickle.load(file) saved_models = list(model_dict.keys()) # st.write(saved_models) required_saved_models = [ m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col ] sel_model = st.selectbox( "Select the model to review", required_saved_models ) sel_model_dict = model_dict[sel_model + "__" + target_col] model = sel_model_dict["Model_object"] X_train = sel_model_dict["X_train_tuned"] X_test = sel_model_dict["X_test_tuned"] best_feature_set = sel_model_dict["feature_set"] else: # if non tuned model to be used # Pending with open( os.path.join(st.session_state["project_path"], "best_models.pkl"), "rb", ) as file: model_dict = pickle.load(file) # st.write(model_dict) saved_models = list(model_dict.keys()) required_saved_models = [ m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col ] sel_model = st.selectbox( "Select the model to review", required_saved_models ) sel_model_dict = model_dict[sel_model + "__" + target_col] # st.write(sel_model, sel_model_dict) model = sel_model_dict["Model_object"] X_train = sel_model_dict["X_train"] X_test = sel_model_dict["X_test"] best_feature_set = sel_model_dict["feature_set"] # Calculate contributions st.session_state["orig_media_data"].columns = [ col.lower() .replace(".", "_") .replace("@", "_") .replace(" ", "_") .replace("-", "") .replace(":", "") .replace("__", "_") for col in st.session_state["orig_media_data"].columns ] media_data = st.session_state["media_data"] # st.session_state['orig_media_data']=st.session_state["media_data"] # st.write(media_data) contri_df = pd.DataFrame() y = [] y_pred = [] random_eff_df = get_random_effects(media_data, panel_col, model) random_eff_df["fixed_effect"] = model.fe_params["Intercept"] random_eff_df["panel_effect"] = ( random_eff_df["random_effect"] + random_eff_df["fixed_effect"] ) # random_eff_df.to_csv("Test/random_eff_df_contri.csv", index=False) coef_df = pd.DataFrame(model.fe_params) coef_df.reset_index(inplace=True) coef_df.columns = ["feature", "coef"] # coef_df.reset_index().to_csv("Test/coef_df_contri1.csv",index=False) # print(model.fe_params) x_train_contribution = X_train.copy() x_test_contribution = X_test.copy() # preprocessing not needed since X_train is already preprocessed # X1, X2 = process_train_and_test(x_train_contribution, x_test_contribution, best_feature_set, panel_col, target_col) # x_train_contribution[best_feature_set] = X1[best_feature_set] # x_test_contribution[best_feature_set] = X2[best_feature_set] x_train_contribution = mdf_predict(x_train_contribution, model, random_eff_df) x_test_contribution = mdf_predict(x_test_contribution, model, random_eff_df) x_train_contribution = pd.merge( x_train_contribution, random_eff_df[[panel_col, "panel_effect"]], on=panel_col, how="left", ) x_test_contribution = pd.merge( x_test_contribution, random_eff_df[[panel_col, "panel_effect"]], on=panel_col, how="left", ) for i in range(len(coef_df))[1:]: coef = coef_df.loc[i, "coef"] col = coef_df.loc[i, "feature"] x_train_contribution[str(col) + "_contr"] = coef * x_train_contribution[col] x_test_contribution[str(col) + "_contr"] = coef * x_train_contribution[col] x_train_contribution["sum_contributions"] = x_train_contribution.filter( regex="contr" ).sum(axis=1) x_train_contribution["sum_contributions"] = ( x_train_contribution["sum_contributions"] + x_train_contribution["panel_effect"] ) x_test_contribution["sum_contributions"] = x_test_contribution.filter( regex="contr" ).sum(axis=1) x_test_contribution["sum_contributions"] = ( x_test_contribution["sum_contributions"] + x_test_contribution["panel_effect"] ) # # # test # x_train_contribution.to_csv( # "Test/x_train_contribution.csv", index=False # ) # x_test_contribution.to_csv("Test/x_test_contribution.csv", index=False) # # # st.session_state['orig_media_data'].to_csv("Test/transformed_data.csv",index=False) # st.session_state['X_test_spends'].to_csv("Test/test_spends.csv",index=False) # # st.write(st.session_state['orig_media_data'].columns) # st.write(date_col,panel_col) # st.write(x_test_contribution) overview_test_data_prep_panel( x_test_contribution, st.session_state["orig_media_data"], st.session_state["spends_data"], date_col, panel_col, target_col, ) else: # NON PANEL if st.session_state["is_tuned_model"][target_col] == True: # Sprint4 with open( os.path.join(st.session_state["project_path"], "tuned_model.pkl"), "rb", ) as file: model_dict = pickle.load(file) saved_models = list(model_dict.keys()) required_saved_models = [ m.split("__")[0] for m in saved_models if m.split("__")[1] == target_col ] sel_model = st.selectbox( "Select the model to review", required_saved_models ) sel_model_dict = model_dict[sel_model + "__" + target_col] model = sel_model_dict["Model_object"] X_train = sel_model_dict["X_train_tuned"] X_test = sel_model_dict["X_test_tuned"] best_feature_set = sel_model_dict["feature_set"] x_train_contribution = X_train.copy() x_test_contribution = X_test.copy() x_train_contribution["pred"] = model.predict( x_train_contribution[best_feature_set] ) x_test_contribution["pred"] = model.predict( x_test_contribution[best_feature_set] ) coef_df = pd.DataFrame(model.params) coef_df.reset_index(inplace=True) coef_df.columns = ["feature", "coef"] # st.write(coef_df) for i in range(len(coef_df)): coef = coef_df.loc[i, "coef"] col = coef_df.loc[i, "feature"] if col != "const": x_train_contribution[str(col) + "_contr"] = ( coef * x_train_contribution[col] ) x_test_contribution[str(col) + "_contr"] = ( coef * x_test_contribution[col] ) else: x_train_contribution["const"] = coef x_test_contribution["const"] = coef tuning_cols = [c for c in x_train_contribution.filter(regex="contr").columns if c in ["Week_number_contr", "Trend_contr", "sine_wave_contr", "cosine_wave_contr"]] flag_cols = [c for c in x_train_contribution.filter(regex="contr").columns if "_flag" in c] # add exogenous contribution to base all_exog_vars = st.session_state['bin_dict']['Exogenous'] all_exog_vars = [ var.lower().replace(".", "_").replace("@", "_").replace(" ", "_").replace("-", "").replace(":", "").replace( "__", "_") for var in all_exog_vars] exog_cols = [] if len(all_exog_vars) > 0: for col in x_train_contribution.filter(regex="contr").columns: if len([exog_var for exog_var in all_exog_vars if exog_var in col]) > 0: exog_cols.append(col) base_cols = ["const"] + flag_cols + tuning_cols + exog_cols # st.write(base_cols) x_train_contribution["base_contr"] = x_train_contribution[base_cols].sum(axis=1) x_train_contribution.drop(columns=base_cols, inplace=True) x_test_contribution["base_contr"] = x_test_contribution[base_cols].sum(axis=1) x_test_contribution.drop(columns=base_cols, inplace=True) x_test_contribution.to_csv("Test/test_contr.csv", index=False) overall_contributions = pd.concat([x_train_contribution, x_test_contribution]).reset_index(drop=True) overall_contributions.to_csv("Test/overall_contributions.csv", index=False) overview_test_data_prep_nonpanel( overall_contributions, st.session_state["orig_media_data"].copy(), st.session_state["spends_data"].copy(), date_col, target_col, ) # for k, v in st.session_sta # te.items(): # if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): # st.session_state[k] = v # authenticator = st.session_state.get('authenticator') # if authenticator is None: # authenticator = load_authenticator() # name, authentication_status, username = authenticator.login('Login', 'main') # auth_status = st.session_state['authentication_status'] # if auth_status: # authenticator.logout('Logout', 'main') # is_state_initiaized = st.session_state.get('initialized',False) # if not is_state_initiaized: if "Panel Level 1" in st.session_state["bin_dict"].keys(): panel_col_1=st.session_state["bin_dict"]["Panel Level 1"] else: panel_col_1=None initialize_data( target_col, is_panel, panel_col_1 ) scenario = st.session_state["scenario"] raw_df = st.session_state["raw_df"] st.header("Overview of previous spends") # st.write(scenario.actual_total_spends) # st.write(scenario.actual_total_sales) columns = st.columns((1, 1, 3)) with columns[0]: st.metric( label="Spends", value=format_numbers(float(scenario.actual_total_spends)), ) ###print(f"##################### {scenario.actual_total_sales} ##################") with columns[1]: st.metric( label=sel_target_col_frmttd, value=format_numbers( float(scenario.actual_total_sales), include_indicator=False ), ) actual_summary_df = create_channel_summary(scenario) actual_summary_df["Channel"] = actual_summary_df["Channel"].apply( channel_name_formating ) columns = st.columns((2, 1)) with columns[0]: with st.expander("Channel wise overview"): st.markdown( actual_summary_df.style.set_table_styles( [ { "selector": "th", "props": [("background-color", "#11B6BD")], }, { "selector": "tr:nth-child(even)", "props": [("background-color", "#11B6BD")], }, ] ).to_html(), unsafe_allow_html=True, ) st.markdown("
", unsafe_allow_html=True) ############################## st.plotly_chart(create_contribution_pie(scenario, sel_target_col_frmttd), use_container_width=True) st.markdown("
", unsafe_allow_html=True) ################################3 st.plotly_chart(create_contribuion_stacked_plot(scenario, sel_target_col_frmttd), use_container_width=True) st.markdown("
", unsafe_allow_html=True) ####################################### selected_channel_name = st.selectbox( "Channel", st.session_state["channels_list"] + ["non media"], format_func=channel_name_formating, ) selected_channel = scenario.channels.get(selected_channel_name, None) st.plotly_chart( create_channel_spends_sales_plot(selected_channel, sel_target_col_frmttd), use_container_width=True, ) st.markdown("
", unsafe_allow_html=True) if st.checkbox("Save this session", key="save"): project_dct_path = os.path.join( st.session_state["project_path"], "project_dct.pkl" ) with open(project_dct_path, "wb") as f: pickle.dump(st.session_state["project_dct"], f) update_db("7_Current_Media_Performance.py")