File size: 7,285 Bytes
94ab368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2037919
 
94ab368
2037919
 
 
 
 
94ab368
2037919
94ab368
 
2037919
 
94ab368
2037919
 
94ab368
2037919
 
94ab368
2037919
 
 
 
 
 
 
94ab368
2037919
 
 
 
94ab368
2037919
 
 
94ab368
2037919
94ab368
 
2037919
 
94ab368
2037919
 
 
 
 
94ab368
2037919
94ab368
2037919
94ab368
2037919
 
 
94ab368
2037919
 
94ab368
2037919
94ab368
2037919
 
94ab368
2037919
 
94ab368
2037919
 
94ab368
2037919
 
 
94ab368
2037919
 
94ab368
2037919
 
 
 
 
94ab368
2037919
94ab368
2037919
 
94ab368
2037919
94ab368
2037919
 
 
 
94ab368
2037919
 
94ab368
 
2037919
94ab368
2037919
 
 
 
94ab368
 
 
2037919
 
 
 
 
 
94ab368
2037919
 
 
 
 
94ab368
 
2037919
 
94ab368
2037919
 
 
 
 
 
 
 
 
 
 
 
94ab368
2037919
 
94ab368
2037919
 
94ab368
 
2037919
 
 
 
94ab368
2037919
 
94ab368
2037919
94ab368
2037919
94ab368
2037919
 
94ab368
2037919
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
'''
MMO Build Sprint 3
additions : contributions calculated using tuned Mixed LM model
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model

MMO Build Sprint 4
additions : response metrics selection
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
'''

import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle

from utilities import load_authenticator

from utilities_with_panel import (set_header,
                                  overview_test_data_prep_panel,
                                  overview_test_data_prep_nonpanel,
                                  initialize_data,
                                  load_local_css,
                                  create_channel_summary,
                                  create_contribution_pie,
                                  create_contribuion_stacked_plot,
                                  create_channel_spends_sales_plot,
                                  format_numbers,
                                  channel_name_formating)

import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time

st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()


# def get_random_effects(media_data, panel_col, mdf):
#     random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])

#     for i, market in enumerate(media_data[panel_col].unique()):
#         print(i, end='\r')
#         intercept = mdf.random_effects[market].values[0]
#         random_eff_df.loc[i, 'random_effect'] = intercept
#         random_eff_df.loc[i, panel_col] = market

#     return random_eff_df


# def process_train_and_test(train, test, features, panel_col, target_col):
#     X1 = train[features]

#     ss = MinMaxScaler()
#     X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)

#     X1[panel_col] = train[panel_col]
#     X1[target_col] = train[target_col]

#     if test is not None:
#         X2 = test[features]
#         X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
#         X2[panel_col] = test[panel_col]
#         X2[target_col] = test[target_col]
#         return X1, X2
#     return X1

# def mdf_predict(X_df, mdf, random_eff_df) :
#     X=X_df.copy()
#     X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
#     X['pred_fixed_effect'] = mdf.predict(X)

#     X['pred'] = X['pred_fixed_effect'] + X['random_effect']
#     X.to_csv('Test/merged_df_contri.csv',index=False)
#     X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)

#     return X


# target_col='Revenue'
# target='Revenue'

# # is_panel=False
# # is_panel = st.session_state['is_panel']
# #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in  st.session_state['bin_dict']['Panel Level 1']  ] [0]# set the panel column
# panel_col='Panel'
# date_col = 'date'

# #st.write(media_data)

# is_panel = True 

# # panel_col='markets'
# date_col = 'date'
# for k, v in st.session_state.items():

#     if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
#         st.session_state[k] = v

# authenticator = st.session_state.get('authenticator')

# if authenticator is None:
#     authenticator = load_authenticator()
    
# name, authentication_status, username = authenticator.login('Login', 'main')
# auth_status = st.session_state['authentication_status']

# if auth_status:
#     authenticator.logout('Logout', 'main')
    
#     is_state_initiaized = st.session_state.get('initialized',False)
#     if not is_state_initiaized:
#         a=1

#     def panel_fetch(file_selected):
#         raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")

#         if "Panel" in raw_data_mmm_df.columns:
#             panel = list(set(raw_data_mmm_df["Panel"]))
#         else:
#             raw_data_mmm_df = None
#             panel = None

#         return panel

#     def rerun():
#         st.rerun()

#     metrics_selected='revenue'

#     file_selected = (
#             f"Overview_data_test_panel@#{metrics_selected}.xlsx"
#         )
#     panel_list = panel_fetch(file_selected)

#     if "selected_markets" not in st.session_state:
#         st.session_state['selected_markets']='DMA1'


#     st.header('Overview of previous spends')

#     selected_market= st.selectbox(
#             "Select Markets",
#             ["Total Market"] + panel_list
#         )



#     initialize_data(target_col,selected_market)
#     scenario = st.session_state['scenario']
#     raw_df = st.session_state['raw_df']
#     # st.write(scenario.actual_total_spends)
#     # st.write(scenario.actual_total_sales)
#     columns = st.columns((1,1,3))

#     with columns[0]:
#         st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
#     ###print(f"##################### {scenario.actual_total_sales} ##################")
#     with columns[1]:
#         st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))


#     actual_summary_df = create_channel_summary(scenario)
#     actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating) 

#     columns = st.columns((2,1))
#     #with columns[0]:
#     with st.expander('Channel wise overview'):
#         st.markdown(actual_summary_df.style.set_table_styles(
#         [{
#             'selector': 'th',
#             'props': [('background-color', '#FFFFF')]
#         },
#             {
#             'selector' : 'tr:nth-child(even)',
#             'props' : [('background-color', '#FFFFF')]
#             }]).to_html(), unsafe_allow_html=True)
            
#     st.markdown("<hr>",unsafe_allow_html=True)
#     ##############################

#     st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
#     st.markdown("<hr>",unsafe_allow_html=True)


#     ################################3
#     st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
#     st.markdown("<hr>",unsafe_allow_html=True)
#     #######################################

#     selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
#     selected_channel = scenario.channels.get(selected_channel_name,None)

#     st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)

#     st.markdown("<hr>",unsafe_allow_html=True)

# # elif auth_status == False:
# #     st.error('Username/Password is incorrect')
    
# # if auth_status != True:
# #     try:
# #         username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
# #         if username_forgot_pw:
# #             st.success('New password sent securely')
# #             # Random password to be transferred to user securely
# #         elif username_forgot_pw == False:
# #             st.error('Username not found')
# #     except Exception as e:
# #         st.error(e)