Spaces:
Sleeping
Sleeping
File size: 7,285 Bytes
94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 94ab368 2037919 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
'''
MMO Build Sprint 3
additions : contributions calculated using tuned Mixed LM model
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
MMO Build Sprint 4
additions : response metrics selection
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model
'''
import streamlit as st
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import pickle
from utilities import load_authenticator
from utilities_with_panel import (set_header,
overview_test_data_prep_panel,
overview_test_data_prep_nonpanel,
initialize_data,
load_local_css,
create_channel_summary,
create_contribution_pie,
create_contribuion_stacked_plot,
create_channel_spends_sales_plot,
format_numbers,
channel_name_formating)
import plotly.graph_objects as go
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import time
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
# def get_random_effects(media_data, panel_col, mdf):
# random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
# for i, market in enumerate(media_data[panel_col].unique()):
# print(i, end='\r')
# intercept = mdf.random_effects[market].values[0]
# random_eff_df.loc[i, 'random_effect'] = intercept
# random_eff_df.loc[i, panel_col] = market
# return random_eff_df
# def process_train_and_test(train, test, features, panel_col, target_col):
# X1 = train[features]
# ss = MinMaxScaler()
# X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns)
# X1[panel_col] = train[panel_col]
# X1[target_col] = train[target_col]
# if test is not None:
# X2 = test[features]
# X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns)
# X2[panel_col] = test[panel_col]
# X2[target_col] = test[target_col]
# return X1, X2
# return X1
# def mdf_predict(X_df, mdf, random_eff_df) :
# X=X_df.copy()
# X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left')
# X['pred_fixed_effect'] = mdf.predict(X)
# X['pred'] = X['pred_fixed_effect'] + X['random_effect']
# X.to_csv('Test/merged_df_contri.csv',index=False)
# X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True)
# return X
# target_col='Revenue'
# target='Revenue'
# # is_panel=False
# # is_panel = st.session_state['is_panel']
# #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column
# panel_col='Panel'
# date_col = 'date'
# #st.write(media_data)
# is_panel = True
# # panel_col='markets'
# date_col = 'date'
# for k, v in st.session_state.items():
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
# st.session_state[k] = v
# authenticator = st.session_state.get('authenticator')
# if authenticator is None:
# authenticator = load_authenticator()
# name, authentication_status, username = authenticator.login('Login', 'main')
# auth_status = st.session_state['authentication_status']
# if auth_status:
# authenticator.logout('Logout', 'main')
# is_state_initiaized = st.session_state.get('initialized',False)
# if not is_state_initiaized:
# a=1
# def panel_fetch(file_selected):
# raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
# if "Panel" in raw_data_mmm_df.columns:
# panel = list(set(raw_data_mmm_df["Panel"]))
# else:
# raw_data_mmm_df = None
# panel = None
# return panel
# def rerun():
# st.rerun()
# metrics_selected='revenue'
# file_selected = (
# f"Overview_data_test_panel@#{metrics_selected}.xlsx"
# )
# panel_list = panel_fetch(file_selected)
# if "selected_markets" not in st.session_state:
# st.session_state['selected_markets']='DMA1'
# st.header('Overview of previous spends')
# selected_market= st.selectbox(
# "Select Markets",
# ["Total Market"] + panel_list
# )
# initialize_data(target_col,selected_market)
# scenario = st.session_state['scenario']
# raw_df = st.session_state['raw_df']
# # st.write(scenario.actual_total_spends)
# # st.write(scenario.actual_total_sales)
# columns = st.columns((1,1,3))
# with columns[0]:
# st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends)))
# ###print(f"##################### {scenario.actual_total_sales} ##################")
# with columns[1]:
# st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False))
# actual_summary_df = create_channel_summary(scenario)
# actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating)
# columns = st.columns((2,1))
# #with columns[0]:
# with st.expander('Channel wise overview'):
# st.markdown(actual_summary_df.style.set_table_styles(
# [{
# 'selector': 'th',
# 'props': [('background-color', '#FFFFF')]
# },
# {
# 'selector' : 'tr:nth-child(even)',
# 'props' : [('background-color', '#FFFFF')]
# }]).to_html(), unsafe_allow_html=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# ##############################
# st.plotly_chart(create_contribution_pie(scenario),use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# ################################3
# st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# #######################################
# selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating)
# selected_channel = scenario.channels.get(selected_channel_name,None)
# st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True)
# st.markdown("<hr>",unsafe_allow_html=True)
# # elif auth_status == False:
# # st.error('Username/Password is incorrect')
# # if auth_status != True:
# # try:
# # username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
# # if username_forgot_pw:
# # st.success('New password sent securely')
# # # Random password to be transferred to user securely
# # elif username_forgot_pw == False:
# # st.error('Username not found')
# # except Exception as e:
# # st.error(e)
|