Spaces:
Sleeping
Sleeping
''' | |
MMO Build Sprint 3 | |
additions : contributions calculated using tuned Mixed LM model | |
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model | |
MMO Build Sprint 4 | |
additions : response metrics selection | |
pending : contributions calculations using - 1. not tuned Mixed LM model, 2. tuned OLS model, 3. not tuned OLS model | |
''' | |
import streamlit as st | |
import pandas as pd | |
from sklearn.preprocessing import MinMaxScaler | |
import pickle | |
from utilities import load_authenticator | |
from utilities_with_panel import (set_header, | |
overview_test_data_prep_panel, | |
overview_test_data_prep_nonpanel, | |
initialize_data, | |
load_local_css, | |
create_channel_summary, | |
create_contribution_pie, | |
create_contribuion_stacked_plot, | |
create_channel_spends_sales_plot, | |
format_numbers, | |
channel_name_formating) | |
import plotly.graph_objects as go | |
import streamlit_authenticator as stauth | |
import yaml | |
from yaml import SafeLoader | |
import time | |
st.set_page_config(layout='wide') | |
load_local_css('styles.css') | |
set_header() | |
# def get_random_effects(media_data, panel_col, mdf): | |
# random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"]) | |
# for i, market in enumerate(media_data[panel_col].unique()): | |
# print(i, end='\r') | |
# intercept = mdf.random_effects[market].values[0] | |
# random_eff_df.loc[i, 'random_effect'] = intercept | |
# random_eff_df.loc[i, panel_col] = market | |
# return random_eff_df | |
# def process_train_and_test(train, test, features, panel_col, target_col): | |
# X1 = train[features] | |
# ss = MinMaxScaler() | |
# X1 = pd.DataFrame(ss.fit_transform(X1), columns=X1.columns) | |
# X1[panel_col] = train[panel_col] | |
# X1[target_col] = train[target_col] | |
# if test is not None: | |
# X2 = test[features] | |
# X2 = pd.DataFrame(ss.transform(X2), columns=X2.columns) | |
# X2[panel_col] = test[panel_col] | |
# X2[target_col] = test[target_col] | |
# return X1, X2 | |
# return X1 | |
# def mdf_predict(X_df, mdf, random_eff_df) : | |
# X=X_df.copy() | |
# X=pd.merge(X, random_eff_df[[panel_col,'random_effect']], on=panel_col, how='left') | |
# X['pred_fixed_effect'] = mdf.predict(X) | |
# X['pred'] = X['pred_fixed_effect'] + X['random_effect'] | |
# X.to_csv('Test/merged_df_contri.csv',index=False) | |
# X.drop(columns=['pred_fixed_effect', 'random_effect'], inplace=True) | |
# return X | |
# target_col='Revenue' | |
# target='Revenue' | |
# # is_panel=False | |
# # is_panel = st.session_state['is_panel'] | |
# #panel_col = [col.lower().replace('.','_').replace('@','_').replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") for col in st.session_state['bin_dict']['Panel Level 1'] ] [0]# set the panel column | |
# panel_col='Panel' | |
# date_col = 'date' | |
# #st.write(media_data) | |
# is_panel = True | |
# # panel_col='markets' | |
# date_col = 'date' | |
# for k, v in st.session_state.items(): | |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): | |
# st.session_state[k] = v | |
# authenticator = st.session_state.get('authenticator') | |
# if authenticator is None: | |
# authenticator = load_authenticator() | |
# name, authentication_status, username = authenticator.login('Login', 'main') | |
# auth_status = st.session_state['authentication_status'] | |
# if auth_status: | |
# authenticator.logout('Logout', 'main') | |
# is_state_initiaized = st.session_state.get('initialized',False) | |
# if not is_state_initiaized: | |
# a=1 | |
# def panel_fetch(file_selected): | |
# raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM") | |
# if "Panel" in raw_data_mmm_df.columns: | |
# panel = list(set(raw_data_mmm_df["Panel"])) | |
# else: | |
# raw_data_mmm_df = None | |
# panel = None | |
# return panel | |
# def rerun(): | |
# st.rerun() | |
# metrics_selected='revenue' | |
# file_selected = ( | |
# f"Overview_data_test_panel@#{metrics_selected}.xlsx" | |
# ) | |
# panel_list = panel_fetch(file_selected) | |
# if "selected_markets" not in st.session_state: | |
# st.session_state['selected_markets']='DMA1' | |
# st.header('Overview of previous spends') | |
# selected_market= st.selectbox( | |
# "Select Markets", | |
# ["Total Market"] + panel_list | |
# ) | |
# initialize_data(target_col,selected_market) | |
# scenario = st.session_state['scenario'] | |
# raw_df = st.session_state['raw_df'] | |
# # st.write(scenario.actual_total_spends) | |
# # st.write(scenario.actual_total_sales) | |
# columns = st.columns((1,1,3)) | |
# with columns[0]: | |
# st.metric(label='Spends', value=format_numbers(float(scenario.actual_total_spends))) | |
# ###print(f"##################### {scenario.actual_total_sales} ##################") | |
# with columns[1]: | |
# st.metric(label=target, value=format_numbers(float(scenario.actual_total_sales),include_indicator=False)) | |
# actual_summary_df = create_channel_summary(scenario) | |
# actual_summary_df['Channel'] = actual_summary_df['Channel'].apply(channel_name_formating) | |
# columns = st.columns((2,1)) | |
# #with columns[0]: | |
# with st.expander('Channel wise overview'): | |
# st.markdown(actual_summary_df.style.set_table_styles( | |
# [{ | |
# 'selector': 'th', | |
# 'props': [('background-color', '#FFFFF')] | |
# }, | |
# { | |
# 'selector' : 'tr:nth-child(even)', | |
# 'props' : [('background-color', '#FFFFF')] | |
# }]).to_html(), unsafe_allow_html=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# ############################## | |
# st.plotly_chart(create_contribution_pie(scenario),use_container_width=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# ################################3 | |
# st.plotly_chart(create_contribuion_stacked_plot(scenario),use_container_width=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# ####################################### | |
# selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'] + ['non media'], format_func=channel_name_formating) | |
# selected_channel = scenario.channels.get(selected_channel_name,None) | |
# st.plotly_chart(create_channel_spends_sales_plot(selected_channel), use_container_width=True) | |
# st.markdown("<hr>",unsafe_allow_html=True) | |
# # elif auth_status == False: | |
# # st.error('Username/Password is incorrect') | |
# # if auth_status != True: | |
# # try: | |
# # username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password') | |
# # if username_forgot_pw: | |
# # st.success('New password sent securely') | |
# # # Random password to be transferred to user securely | |
# # elif username_forgot_pw == False: | |
# # st.error('Username not found') | |
# # except Exception as e: | |
# # st.error(e) | |