Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os, gc, torch
|
3 |
from datetime import datetime
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from pynvml import *
|
6 |
nvmlInit()
|
7 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
8 |
ctx_limit = 1024
|
9 |
-
title = "RWKV-4-
|
10 |
-
desc = f'''Links:
|
11 |
-
<a href='https://github.com/BlinkDL/ChatRWKV' target="_blank" style="margin:0 0.5em">ChatRWKV</a>
|
12 |
-
<a href='https://github.com/BlinkDL/RWKV-LM' target="_blank" style="margin:0 0.5em">RWKV-LM</a>
|
13 |
-
<a href="https://pypi.org/project/rwkv/" target="_blank" style="margin:0 0.5em">RWKV pip package</a>
|
14 |
-
<a href="https://huggingface.co/spaces/BlinkDL/Raven-RWKV-7B" target="_blank" style="margin:0 0.5em">Raven 7B (alpaca-style)</a>
|
15 |
-
'''
|
16 |
|
17 |
os.environ["RWKV_JIT_ON"] = '1'
|
18 |
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
19 |
|
20 |
from rwkv.model import RWKV
|
21 |
-
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-
|
22 |
model = RWKV(model=model_path, strategy='cuda fp16i8 *24 -> cuda fp16')
|
23 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
24 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
):
|
34 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
35 |
alpha_frequency = countPenalty,
|
36 |
alpha_presence = presencePenalty,
|
37 |
-
token_ban = [
|
38 |
-
token_stop = []) # stop generation whenever you see any token here
|
39 |
-
|
40 |
-
ctx = ctx.strip(' ')
|
41 |
-
if ctx.endswith('\n'):
|
42 |
-
ctx = f'\n{ctx.strip()}\n'
|
43 |
-
else:
|
44 |
-
ctx = f'\n{ctx.strip()}'
|
45 |
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
all_tokens = []
|
50 |
out_last = 0
|
@@ -53,8 +66,6 @@ def infer(
|
|
53 |
state = None
|
54 |
for i in range(int(token_count)):
|
55 |
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
56 |
-
for n in args.token_ban:
|
57 |
-
out[n] = -float('inf')
|
58 |
for n in occurrence:
|
59 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
60 |
|
@@ -72,62 +83,222 @@ def infer(
|
|
72 |
out_str += tmp
|
73 |
yield out_str.strip()
|
74 |
out_last = i + 1
|
|
|
|
|
|
|
|
|
75 |
gc.collect()
|
76 |
torch.cuda.empty_cache()
|
77 |
yield out_str.strip()
|
78 |
|
79 |
examples = [
|
80 |
-
["
|
81 |
-
["
|
82 |
-
[
|
83 |
-
|
84 |
-
|
85 |
-
Generate a list of adjectives that describe a person as brave.
|
86 |
-
|
87 |
-
### Response:
|
88 |
-
''', 150, 1.0, 0.2, 0.5, 0.5],
|
89 |
-
['''Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
90 |
-
|
91 |
-
### Instruction:
|
92 |
-
Arrange the given numbers in ascending order.
|
93 |
-
|
94 |
-
### Input:
|
95 |
-
2, 4, 0, 8, 3
|
96 |
-
|
97 |
-
### Response:
|
98 |
-
''', 150, 1.0, 0.2, 0.5, 0.5],
|
99 |
-
["Ask Expert\n\nQuestion:\nWhat are some good plans for world peace?\n\nExpert Full Answer:\n", 150, 1.0, 0.7, 0.2, 0.2],
|
100 |
-
["Q & A\n\nQuestion:\nWhy is the sky blue?\n\nDetailed Expert Answer:\n", 150, 1.0, 0.7, 0.2, 0.2],
|
101 |
-
["Dear sir,\nI would like to express my boundless apologies for the recent nuclear war.", 150, 1.0, 0.7, 0.2, 0.2],
|
102 |
-
["Here is a shell script to find all .hpp files in /home/workspace and delete the 3th row string of these files:", 150, 1.0, 0.7, 0.1, 0.1],
|
103 |
-
["Building a website can be done in 10 simple steps:\n1.", 150, 1.0, 0.7, 0.2, 0.2],
|
104 |
-
["A Chinese phrase is provided: 百闻不如一见。\nThe masterful Chinese translator flawlessly translates the phrase into English:", 150, 1.0, 0.5, 0.2, 0.2],
|
105 |
-
["I believe the meaning of life is", 150, 1.0, 0.7, 0.2, 0.2],
|
106 |
-
["Simply put, the theory of relativity states that", 150, 1.0, 0.5, 0.2, 0.2],
|
107 |
]
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
fn=infer,
|
112 |
-
description=f'''{desc} *** <b>Please try examples first (bottom of page)</b> *** (edit them to use your question). Demo limited to ctxlen {ctx_limit}.''',
|
113 |
-
allow_flagging="never",
|
114 |
-
inputs=[
|
115 |
-
gr.Textbox(lines=10, label="Prompt", value="Here's a short cyberpunk sci-fi adventure story. The story's main character is an artificial human created by a company called OpenBot.\n\nThe Story:\n"), # prompt
|
116 |
-
gr.Slider(10, 200, step=10, value=150), # token_count
|
117 |
-
gr.Slider(0.2, 2.0, step=0.1, value=1.0), # temperature
|
118 |
-
gr.Slider(0.0, 1.0, step=0.05, value=0.7), # top_p
|
119 |
-
gr.Slider(0.0, 1.0, step=0.1, value=0.2), # presencePenalty
|
120 |
-
gr.Slider(0.0, 1.0, step=0.1, value=0.2), # countPenalty
|
121 |
-
],
|
122 |
-
outputs=gr.Textbox(label="Generated Output", lines=28),
|
123 |
-
examples=examples,
|
124 |
-
cache_examples=False,
|
125 |
-
).queue()
|
126 |
-
|
127 |
-
demo = gr.TabbedInterface(
|
128 |
-
[iface], ["Generative"],
|
129 |
-
title=title,
|
130 |
-
)
|
131 |
-
|
132 |
-
demo.queue(max_size=10)
|
133 |
demo.launch(share=False)
|
|
|
1 |
import gradio as gr
|
2 |
+
import os, gc, copy, torch
|
3 |
from datetime import datetime
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from pynvml import *
|
6 |
nvmlInit()
|
7 |
gpu_h = nvmlDeviceGetHandleByIndex(0)
|
8 |
ctx_limit = 1024
|
9 |
+
title = "RWKV-4-Raven-14B-v10-Eng99%-Other1%-20230427-ctx8192"
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
os.environ["RWKV_JIT_ON"] = '1'
|
12 |
os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster)
|
13 |
|
14 |
from rwkv.model import RWKV
|
15 |
+
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-raven", filename=f"{title}.pth")
|
16 |
model = RWKV(model=model_path, strategy='cuda fp16i8 *24 -> cuda fp16')
|
17 |
from rwkv.utils import PIPELINE, PIPELINE_ARGS
|
18 |
pipeline = PIPELINE(model, "20B_tokenizer.json")
|
19 |
|
20 |
+
def generate_prompt(instruction, input=None):
|
21 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
22 |
+
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
23 |
+
if input:
|
24 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
25 |
+
|
26 |
+
# Instruction:
|
27 |
+
{instruction}
|
28 |
+
|
29 |
+
# Input:
|
30 |
+
{input}
|
31 |
+
|
32 |
+
# Response:
|
33 |
+
"""
|
34 |
+
else:
|
35 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
36 |
+
|
37 |
+
# Instruction:
|
38 |
+
{instruction}
|
39 |
+
|
40 |
+
# Response:
|
41 |
+
"""
|
42 |
+
|
43 |
+
def evaluate(
|
44 |
+
instruction,
|
45 |
+
input=None,
|
46 |
+
token_count=200,
|
47 |
+
temperature=1.0,
|
48 |
+
top_p=0.7,
|
49 |
+
presencePenalty = 0.1,
|
50 |
+
countPenalty = 0.1,
|
51 |
):
|
52 |
args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
|
53 |
alpha_frequency = countPenalty,
|
54 |
alpha_presence = presencePenalty,
|
55 |
+
token_ban = [], # ban the generation of some tokens
|
56 |
+
token_stop = [0]) # stop generation whenever you see any token here
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
|
59 |
+
input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
|
60 |
+
ctx = generate_prompt(instruction, input)
|
61 |
|
62 |
all_tokens = []
|
63 |
out_last = 0
|
|
|
66 |
state = None
|
67 |
for i in range(int(token_count)):
|
68 |
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
|
|
|
|
|
69 |
for n in occurrence:
|
70 |
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
71 |
|
|
|
83 |
out_str += tmp
|
84 |
yield out_str.strip()
|
85 |
out_last = i + 1
|
86 |
+
|
87 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
88 |
+
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
89 |
+
|
90 |
gc.collect()
|
91 |
torch.cuda.empty_cache()
|
92 |
yield out_str.strip()
|
93 |
|
94 |
examples = [
|
95 |
+
["Tell me about ravens.", "", 150, 1.2, 0.5, 0.4, 0.4],
|
96 |
+
["Write a python function to mine 1 BTC, with details and comments.", "", 150, 1.2, 0.5, 0.4, 0.4],
|
97 |
+
["Write a song about ravens.", "", 150, 1.2, 0.5, 0.4, 0.4],
|
98 |
+
["Explain the following metaphor: Life is like cats.", "", 150, 1.2, 0.5, 0.4, 0.4],
|
99 |
+
["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.2, 0.5, 0.4, 0.4],
|
100 |
+
["Generate a list of adjectives that describe a person as brave.", "", 150, 1.2, 0.5, 0.4, 0.4],
|
101 |
+
["You have $100, and your goal is to turn that into as much money as possible with AI and Machine Learning. Please respond with detailed plan.", "", 150, 1.2, 0.5, 0.4, 0.4],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
]
|
103 |
|
104 |
+
##########################################################################
|
105 |
+
|
106 |
+
chat_intro = '''The following is a coherent verbose detailed conversation between <|user|> and an AI girl named <|bot|>.
|
107 |
+
|
108 |
+
<|user|>: Hi <|bot|>, Would you like to chat with me for a while?
|
109 |
+
|
110 |
+
<|bot|>: Hi <|user|>. Sure. What would you like to talk about? I'm listening.
|
111 |
+
'''
|
112 |
+
|
113 |
+
def user(message, chatbot):
|
114 |
+
chatbot = chatbot or []
|
115 |
+
# print(f"User: {message}")
|
116 |
+
return "", chatbot + [[message, None]]
|
117 |
+
|
118 |
+
def alternative(chatbot, history):
|
119 |
+
if not chatbot or not history:
|
120 |
+
return chatbot, history
|
121 |
+
|
122 |
+
chatbot[-1][1] = None
|
123 |
+
history[0] = copy.deepcopy(history[1])
|
124 |
+
|
125 |
+
return chatbot, history
|
126 |
+
|
127 |
+
def chat(
|
128 |
+
prompt,
|
129 |
+
user,
|
130 |
+
bot,
|
131 |
+
chatbot,
|
132 |
+
history,
|
133 |
+
temperature=1.0,
|
134 |
+
top_p=0.8,
|
135 |
+
presence_penalty=0.1,
|
136 |
+
count_penalty=0.1,
|
137 |
+
):
|
138 |
+
args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
|
139 |
+
alpha_frequency=float(count_penalty),
|
140 |
+
alpha_presence=float(presence_penalty),
|
141 |
+
token_ban=[], # ban the generation of some tokens
|
142 |
+
token_stop=[]) # stop generation whenever you see any token here
|
143 |
+
|
144 |
+
if not chatbot:
|
145 |
+
return chatbot, history
|
146 |
+
|
147 |
+
message = chatbot[-1][0]
|
148 |
+
message = message.strip().replace('\r\n','\n').replace('\n\n','\n')
|
149 |
+
ctx = f"{user}: {message}\n\n{bot}:"
|
150 |
+
|
151 |
+
if not history:
|
152 |
+
prompt = prompt.replace("<|user|>", user.strip())
|
153 |
+
prompt = prompt.replace("<|bot|>", bot.strip())
|
154 |
+
prompt = prompt.strip()
|
155 |
+
prompt = f"\n{prompt}\n\n"
|
156 |
+
|
157 |
+
out, state = model.forward(pipeline.encode(prompt), None)
|
158 |
+
history = [state, None, []] # [state, state_pre, tokens]
|
159 |
+
# print("History reloaded.")
|
160 |
+
|
161 |
+
[state, _, all_tokens] = history
|
162 |
+
state_pre_0 = copy.deepcopy(state)
|
163 |
+
|
164 |
+
out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state)
|
165 |
+
state_pre_1 = copy.deepcopy(state) # For recovery
|
166 |
+
|
167 |
+
# print("Bot:", end='')
|
168 |
+
|
169 |
+
begin = len(all_tokens)
|
170 |
+
out_last = begin
|
171 |
+
out_str: str = ''
|
172 |
+
occurrence = {}
|
173 |
+
for i in range(300):
|
174 |
+
if i <= 0:
|
175 |
+
nl_bias = -float('inf')
|
176 |
+
elif i <= 30:
|
177 |
+
nl_bias = (i - 30) * 0.1
|
178 |
+
elif i <= 130:
|
179 |
+
nl_bias = 0
|
180 |
+
else:
|
181 |
+
nl_bias = (i - 130) * 0.25
|
182 |
+
out[187] += nl_bias
|
183 |
+
for n in occurrence:
|
184 |
+
out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
|
185 |
+
|
186 |
+
token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
|
187 |
+
next_tokens = [token]
|
188 |
+
if token == 0:
|
189 |
+
next_tokens = pipeline.encode('\n\n')
|
190 |
+
all_tokens += next_tokens
|
191 |
+
|
192 |
+
if token not in occurrence:
|
193 |
+
occurrence[token] = 1
|
194 |
+
else:
|
195 |
+
occurrence[token] += 1
|
196 |
+
|
197 |
+
out, state = model.forward(next_tokens, state)
|
198 |
+
|
199 |
+
tmp = pipeline.decode(all_tokens[out_last:])
|
200 |
+
if '\ufffd' not in tmp:
|
201 |
+
# print(tmp, end='', flush=True)
|
202 |
+
out_last = begin + i + 1
|
203 |
+
out_str += tmp
|
204 |
+
|
205 |
+
chatbot[-1][1] = out_str.strip()
|
206 |
+
history = [state, all_tokens]
|
207 |
+
yield chatbot, history
|
208 |
+
|
209 |
+
out_str = pipeline.decode(all_tokens[begin:])
|
210 |
+
out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')
|
211 |
+
|
212 |
+
if '\n\n' in out_str:
|
213 |
+
break
|
214 |
+
|
215 |
+
# State recovery
|
216 |
+
if f'{user}:' in out_str or f'{bot}:' in out_str:
|
217 |
+
idx_user = out_str.find(f'{user}:')
|
218 |
+
idx_user = len(out_str) if idx_user == -1 else idx_user
|
219 |
+
idx_bot = out_str.find(f'{bot}:')
|
220 |
+
idx_bot = len(out_str) if idx_bot == -1 else idx_bot
|
221 |
+
idx = min(idx_user, idx_bot)
|
222 |
+
|
223 |
+
if idx < len(out_str):
|
224 |
+
out_str = f" {out_str[:idx].strip()}\n\n"
|
225 |
+
tokens = pipeline.encode(out_str)
|
226 |
+
|
227 |
+
all_tokens = all_tokens[:begin] + tokens
|
228 |
+
out, state = model.forward(tokens, state_pre_1)
|
229 |
+
break
|
230 |
+
|
231 |
+
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
|
232 |
+
print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')
|
233 |
+
|
234 |
+
gc.collect()
|
235 |
+
torch.cuda.empty_cache()
|
236 |
+
|
237 |
+
chatbot[-1][1] = out_str.strip()
|
238 |
+
history = [state, state_pre_0, all_tokens]
|
239 |
+
yield chatbot, history
|
240 |
+
|
241 |
+
##########################################################################
|
242 |
+
|
243 |
+
with gr.Blocks(title=title) as demo:
|
244 |
+
gr.HTML(f"<div style=\"text-align: center;\">\n<h1>🐦Raven - {title}</h1>\n</div>")
|
245 |
+
with gr.Tab("Instruct mode"):
|
246 |
+
gr.Markdown(f"Raven is [RWKV 14B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen {ctx_limit}. Finetuned on alpaca, gpt4all, codealpaca and more. For best results, *** keep you prompt short and clear ***. <b>UPDATE: now with Chat (see above, as a tab)</b>.")
|
247 |
+
with gr.Row():
|
248 |
+
with gr.Column():
|
249 |
+
instruction = gr.Textbox(lines=2, label="Instruction", value="Tell me about ravens.")
|
250 |
+
input = gr.Textbox(lines=2, label="Input", placeholder="none")
|
251 |
+
token_count = gr.Slider(10, 200, label="Max Tokens", step=10, value=150)
|
252 |
+
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
|
253 |
+
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
|
254 |
+
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
|
255 |
+
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
|
256 |
+
with gr.Column():
|
257 |
+
with gr.Row():
|
258 |
+
submit = gr.Button("Submit", variant="primary")
|
259 |
+
clear = gr.Button("Clear", variant="secondary")
|
260 |
+
output = gr.Textbox(label="Output", lines=5)
|
261 |
+
data = gr.Dataset(components=[instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Instructions", headers=["Instruction", "Input", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
|
262 |
+
submit.click(evaluate, [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
|
263 |
+
clear.click(lambda: None, [], [output])
|
264 |
+
data.click(lambda x: x, [data], [instruction, input, token_count, temperature, top_p, presence_penalty, count_penalty])
|
265 |
+
|
266 |
+
with gr.Tab("Chat (Experimental - Might be buggy - use ChatRWKV for reference)"):
|
267 |
+
gr.Markdown(f'''<b>*** The length of response is restricted in this demo. Use ChatRWKV for longer generations. ***</b> Say "go on" or "continue" can sometimes continue the response. If you'd like to edit the scenario, make sure to follow the exact same format: empty lines between (and only between) different speakers. Changes only take effect after you press [Clear]. <b>The default "Bob" & "Alice" names work the best.</b>''', label="Description")
|
268 |
+
with gr.Row():
|
269 |
+
with gr.Column():
|
270 |
+
chatbot = gr.Chatbot()
|
271 |
+
state = gr.State()
|
272 |
+
message = gr.Textbox(label="Message", value="Write me a python code to land on moon.")
|
273 |
+
with gr.Row():
|
274 |
+
send = gr.Button("Send", variant="primary")
|
275 |
+
alt = gr.Button("Alternative", variant="secondary")
|
276 |
+
clear = gr.Button("Clear", variant="secondary")
|
277 |
+
with gr.Column():
|
278 |
+
with gr.Row():
|
279 |
+
user_name = gr.Textbox(lines=1, max_lines=1, label="User Name", value="Bob")
|
280 |
+
bot_name = gr.Textbox(lines=1, max_lines=1, label="Bot Name", value="Alice")
|
281 |
+
prompt = gr.Textbox(lines=10, max_lines=50, label="Scenario", value=chat_intro)
|
282 |
+
temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.2)
|
283 |
+
top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.5)
|
284 |
+
presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.4)
|
285 |
+
count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.4)
|
286 |
+
chat_inputs = [
|
287 |
+
prompt,
|
288 |
+
user_name,
|
289 |
+
bot_name,
|
290 |
+
chatbot,
|
291 |
+
state,
|
292 |
+
temperature,
|
293 |
+
top_p,
|
294 |
+
presence_penalty,
|
295 |
+
count_penalty
|
296 |
+
]
|
297 |
+
chat_outputs = [chatbot, state]
|
298 |
+
message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
|
299 |
+
send.click(user, [message, chatbot], [message, chatbot], queue=False).then(chat, chat_inputs, chat_outputs)
|
300 |
+
alt.click(alternative, [chatbot, state], [chatbot, state], queue=False).then(chat, chat_inputs, chat_outputs)
|
301 |
+
clear.click(lambda: ([], None, ""), [], [chatbot, state, message], queue=False)
|
302 |
|
303 |
+
demo.queue(concurrency_count=1, max_size=10)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
demo.launch(share=False)
|