Joshua Lochner
commited on
Enable lazy construction of pipeline (#554)
Browse files
src/lib/server/websearch/sentenceSimilarity.ts
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import type { Tensor } from "@xenova/transformers";
|
2 |
import { pipeline, dot } from "@xenova/transformers";
|
3 |
|
4 |
// see here: https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/README.md?plain=1#L34
|
@@ -6,8 +6,18 @@ function innerProduct(tensor1: Tensor, tensor2: Tensor) {
|
|
6 |
return 1.0 - dot(tensor1.data, tensor2.data);
|
7 |
}
|
8 |
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
// see https://huggingface.co/thenlper/gte-small/blob/d8e2604cadbeeda029847d19759d219e0ce2e6d8/README.md?code=true#L2625
|
12 |
export const MAX_SEQ_LEN = 512 as const;
|
13 |
|
@@ -17,6 +27,8 @@ export async function findSimilarSentences(
|
|
17 |
{ topK = 5 }: { topK: number }
|
18 |
) {
|
19 |
const input = [query, ...sentences];
|
|
|
|
|
20 |
const output: Tensor = await extractor(input, { pooling: "mean", normalize: true });
|
21 |
|
22 |
const queryTensor: Tensor = output[0];
|
|
|
1 |
+
import type { Tensor, Pipeline } from "@xenova/transformers";
|
2 |
import { pipeline, dot } from "@xenova/transformers";
|
3 |
|
4 |
// see here: https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/README.md?plain=1#L34
|
|
|
6 |
return 1.0 - dot(tensor1.data, tensor2.data);
|
7 |
}
|
8 |
|
9 |
+
// Use the Singleton pattern to enable lazy construction of the pipeline.
|
10 |
+
class PipelineSingleton {
|
11 |
+
static modelId = "Xenova/gte-small";
|
12 |
+
static instance: Promise<Pipeline> | null = null;
|
13 |
+
static async getInstance() {
|
14 |
+
if (this.instance === null) {
|
15 |
+
this.instance = pipeline("feature-extraction", this.modelId);
|
16 |
+
}
|
17 |
+
return this.instance;
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
// see https://huggingface.co/thenlper/gte-small/blob/d8e2604cadbeeda029847d19759d219e0ce2e6d8/README.md?code=true#L2625
|
22 |
export const MAX_SEQ_LEN = 512 as const;
|
23 |
|
|
|
27 |
{ topK = 5 }: { topK: number }
|
28 |
) {
|
29 |
const input = [query, ...sentences];
|
30 |
+
|
31 |
+
const extractor = await PipelineSingleton.getInstance();
|
32 |
const output: Tensor = await extractor(input, { pooling: "mean", normalize: true });
|
33 |
|
34 |
const queryTensor: Tensor = output[0];
|