Implement Cloudflare Workers AI endpoint (#907) (#972)
Browse files* Implement Cloudflare Workers AI endpoint (#907)
* Renamed to Cloudflare Workers AI in docs
* Add note about sampling parameters
* clean up env example
- .env +3 -0
- README.md +32 -0
- src/lib/server/endpoints/cloudflare/endpointCloudflare.ts +134 -0
- src/lib/server/endpoints/endpoints.ts +5 -0
- src/lib/server/models.ts +2 -0
.env
CHANGED
@@ -8,8 +8,11 @@ MONGODB_DIRECT_CONNECTION=false
|
|
8 |
COOKIE_NAME=hf-chat
|
9 |
HF_TOKEN=#hf_<token> from https://huggingface.co/settings/token
|
10 |
HF_API_ROOT=https://api-inference.huggingface.co/models
|
|
|
11 |
OPENAI_API_KEY=#your openai api key here
|
12 |
ANTHROPIC_API_KEY=#your anthropic api key here
|
|
|
|
|
13 |
|
14 |
HF_ACCESS_TOKEN=#LEGACY! Use HF_TOKEN instead
|
15 |
|
|
|
8 |
COOKIE_NAME=hf-chat
|
9 |
HF_TOKEN=#hf_<token> from https://huggingface.co/settings/token
|
10 |
HF_API_ROOT=https://api-inference.huggingface.co/models
|
11 |
+
|
12 |
OPENAI_API_KEY=#your openai api key here
|
13 |
ANTHROPIC_API_KEY=#your anthropic api key here
|
14 |
+
CLOUDFLARE_ACCOUNT_ID=#your cloudflare account id here
|
15 |
+
CLOUDFLARE_API_TOKEN=#your cloudflare api token here
|
16 |
|
17 |
HF_ACCESS_TOKEN=#LEGACY! Use HF_TOKEN instead
|
18 |
|
README.md
CHANGED
@@ -528,6 +528,38 @@ You can also set `"service" : "lambda"` to use a lambda instance.
|
|
528 |
|
529 |
You can get the `accessKey` and `secretKey` from your AWS user, under programmatic access.
|
530 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
##### Google Vertex models
|
532 |
|
533 |
Chat UI can connect to the google Vertex API endpoints ([List of supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models)).
|
|
|
528 |
|
529 |
You can get the `accessKey` and `secretKey` from your AWS user, under programmatic access.
|
530 |
|
531 |
+
#### Cloudflare Workers AI
|
532 |
+
|
533 |
+
You can also use Cloudflare Workers AI to run your own models with serverless inference.
|
534 |
+
|
535 |
+
You will need to have a Cloudflare account, then get your [account ID](https://developers.cloudflare.com/fundamentals/setup/find-account-and-zone-ids/) as well as your [API token](https://developers.cloudflare.com/workers-ai/get-started/rest-api/#1-get-an-api-token) for Workers AI.
|
536 |
+
|
537 |
+
You can either specify them directly in your `.env.local` using the `CLOUDFLARE_ACCOUNT_ID` and `CLOUDFLARE_API_TOKEN` variables, or you can set them directly in the endpoint config.
|
538 |
+
|
539 |
+
You can find the list of models available on Cloudflare [here](https://developers.cloudflare.com/workers-ai/models/#text-generation).
|
540 |
+
|
541 |
+
```env
|
542 |
+
{
|
543 |
+
"name" : "nousresearch/hermes-2-pro-mistral-7b",
|
544 |
+
"tokenizer": "nousresearch/hermes-2-pro-mistral-7b",
|
545 |
+
"parameters": {
|
546 |
+
"stop": ["<|im_end|>"]
|
547 |
+
},
|
548 |
+
"endpoints" : [
|
549 |
+
{
|
550 |
+
"type" : "cloudflare"
|
551 |
+
<!-- optionally specify these
|
552 |
+
"accountId": "your-account-id",
|
553 |
+
"authToken": "your-api-token"
|
554 |
+
-->
|
555 |
+
}
|
556 |
+
]
|
557 |
+
}
|
558 |
+
```
|
559 |
+
|
560 |
+
> [!NOTE]
|
561 |
+
> Cloudlare Workers AI currently do not support custom sampling parameters like temperature, top_p, etc.
|
562 |
+
|
563 |
##### Google Vertex models
|
564 |
|
565 |
Chat UI can connect to the google Vertex API endpoints ([List of supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models)).
|
src/lib/server/endpoints/cloudflare/endpointCloudflare.ts
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import { z } from "zod";
|
2 |
+
import type { Endpoint } from "../endpoints";
|
3 |
+
import type { TextGenerationStreamOutput } from "@huggingface/inference";
|
4 |
+
import { CLOUDFLARE_ACCOUNT_ID, CLOUDFLARE_API_TOKEN } from "$env/static/private";
|
5 |
+
|
6 |
+
export const endpointCloudflareParametersSchema = z.object({
|
7 |
+
weight: z.number().int().positive().default(1),
|
8 |
+
model: z.any(),
|
9 |
+
type: z.literal("cloudflare"),
|
10 |
+
accountId: z.string().default(CLOUDFLARE_ACCOUNT_ID),
|
11 |
+
apiToken: z.string().default(CLOUDFLARE_API_TOKEN),
|
12 |
+
});
|
13 |
+
|
14 |
+
export async function endpointCloudflare(
|
15 |
+
input: z.input<typeof endpointCloudflareParametersSchema>
|
16 |
+
): Promise<Endpoint> {
|
17 |
+
const { accountId, apiToken, model } = endpointCloudflareParametersSchema.parse(input);
|
18 |
+
const apiURL = `https://api.cloudflare.com/client/v4/accounts/${accountId}/ai/run/@hf/${model.id}`;
|
19 |
+
|
20 |
+
return async ({ messages, preprompt }) => {
|
21 |
+
let messagesFormatted = messages.map((message) => ({
|
22 |
+
role: message.from,
|
23 |
+
content: message.content,
|
24 |
+
}));
|
25 |
+
|
26 |
+
if (messagesFormatted?.[0]?.role !== "system") {
|
27 |
+
messagesFormatted = [{ role: "system", content: preprompt ?? "" }, ...messagesFormatted];
|
28 |
+
}
|
29 |
+
|
30 |
+
const payload = JSON.stringify({
|
31 |
+
messages: messagesFormatted,
|
32 |
+
stream: true,
|
33 |
+
});
|
34 |
+
|
35 |
+
const res = await fetch(apiURL, {
|
36 |
+
method: "POST",
|
37 |
+
headers: {
|
38 |
+
Authorization: `Bearer ${apiToken}`,
|
39 |
+
"Content-Type": "application/json",
|
40 |
+
},
|
41 |
+
body: payload,
|
42 |
+
});
|
43 |
+
|
44 |
+
if (!res.ok) {
|
45 |
+
throw new Error(`Failed to generate text: ${await res.text()}`);
|
46 |
+
}
|
47 |
+
|
48 |
+
const encoder = new TextDecoderStream();
|
49 |
+
const reader = res.body?.pipeThrough(encoder).getReader();
|
50 |
+
|
51 |
+
return (async function* () {
|
52 |
+
let stop = false;
|
53 |
+
let generatedText = "";
|
54 |
+
let tokenId = 0;
|
55 |
+
let accumulatedData = ""; // Buffer to accumulate data chunks
|
56 |
+
|
57 |
+
while (!stop) {
|
58 |
+
const out = await reader?.read();
|
59 |
+
|
60 |
+
// If it's done, we cancel
|
61 |
+
if (out?.done) {
|
62 |
+
reader?.cancel();
|
63 |
+
return;
|
64 |
+
}
|
65 |
+
|
66 |
+
if (!out?.value) {
|
67 |
+
return;
|
68 |
+
}
|
69 |
+
|
70 |
+
// Accumulate the data chunk
|
71 |
+
accumulatedData += out.value;
|
72 |
+
|
73 |
+
// Process each complete JSON object in the accumulated data
|
74 |
+
while (accumulatedData.includes("\n")) {
|
75 |
+
// Assuming each JSON object ends with a newline
|
76 |
+
const endIndex = accumulatedData.indexOf("\n");
|
77 |
+
let jsonString = accumulatedData.substring(0, endIndex).trim();
|
78 |
+
|
79 |
+
// Remove the processed part from the buffer
|
80 |
+
accumulatedData = accumulatedData.substring(endIndex + 1);
|
81 |
+
|
82 |
+
if (jsonString.startsWith("data: ")) {
|
83 |
+
jsonString = jsonString.slice(6);
|
84 |
+
let data = null;
|
85 |
+
|
86 |
+
if (jsonString === "[DONE]") {
|
87 |
+
stop = true;
|
88 |
+
|
89 |
+
yield {
|
90 |
+
token: {
|
91 |
+
id: tokenId++,
|
92 |
+
text: "",
|
93 |
+
logprob: 0,
|
94 |
+
special: true,
|
95 |
+
},
|
96 |
+
generated_text: generatedText,
|
97 |
+
details: null,
|
98 |
+
} satisfies TextGenerationStreamOutput;
|
99 |
+
reader?.cancel();
|
100 |
+
|
101 |
+
continue;
|
102 |
+
}
|
103 |
+
|
104 |
+
try {
|
105 |
+
data = JSON.parse(jsonString);
|
106 |
+
} catch (e) {
|
107 |
+
console.error("Failed to parse JSON", e);
|
108 |
+
console.error("Problematic JSON string:", jsonString);
|
109 |
+
continue; // Skip this iteration and try the next chunk
|
110 |
+
}
|
111 |
+
|
112 |
+
// Handle the parsed data
|
113 |
+
if (data.response) {
|
114 |
+
generatedText += data.response ?? "";
|
115 |
+
const output: TextGenerationStreamOutput = {
|
116 |
+
token: {
|
117 |
+
id: tokenId++,
|
118 |
+
text: data.response ?? "",
|
119 |
+
logprob: 0,
|
120 |
+
special: false,
|
121 |
+
},
|
122 |
+
generated_text: null,
|
123 |
+
details: null,
|
124 |
+
};
|
125 |
+
yield output;
|
126 |
+
}
|
127 |
+
}
|
128 |
+
}
|
129 |
+
}
|
130 |
+
})();
|
131 |
+
};
|
132 |
+
}
|
133 |
+
|
134 |
+
export default endpointCloudflare;
|
src/lib/server/endpoints/endpoints.ts
CHANGED
@@ -13,6 +13,9 @@ import {
|
|
13 |
endpointAnthropicParametersSchema,
|
14 |
} from "./anthropic/endpointAnthropic";
|
15 |
import type { Model } from "$lib/types/Model";
|
|
|
|
|
|
|
16 |
|
17 |
// parameters passed when generating text
|
18 |
export interface EndpointParameters {
|
@@ -42,6 +45,7 @@ export const endpoints = {
|
|
42 |
llamacpp: endpointLlamacpp,
|
43 |
ollama: endpointOllama,
|
44 |
vertex: endpointVertex,
|
|
|
45 |
};
|
46 |
|
47 |
export const endpointSchema = z.discriminatedUnion("type", [
|
@@ -52,5 +56,6 @@ export const endpointSchema = z.discriminatedUnion("type", [
|
|
52 |
endpointLlamacppParametersSchema,
|
53 |
endpointOllamaParametersSchema,
|
54 |
endpointVertexParametersSchema,
|
|
|
55 |
]);
|
56 |
export default endpoints;
|
|
|
13 |
endpointAnthropicParametersSchema,
|
14 |
} from "./anthropic/endpointAnthropic";
|
15 |
import type { Model } from "$lib/types/Model";
|
16 |
+
import endpointCloudflare, {
|
17 |
+
endpointCloudflareParametersSchema,
|
18 |
+
} from "./cloudflare/endpointCloudflare";
|
19 |
|
20 |
// parameters passed when generating text
|
21 |
export interface EndpointParameters {
|
|
|
45 |
llamacpp: endpointLlamacpp,
|
46 |
ollama: endpointOllama,
|
47 |
vertex: endpointVertex,
|
48 |
+
cloudflare: endpointCloudflare,
|
49 |
};
|
50 |
|
51 |
export const endpointSchema = z.discriminatedUnion("type", [
|
|
|
56 |
endpointLlamacppParametersSchema,
|
57 |
endpointOllamaParametersSchema,
|
58 |
endpointVertexParametersSchema,
|
59 |
+
endpointCloudflareParametersSchema,
|
60 |
]);
|
61 |
export default endpoints;
|
src/lib/server/models.ts
CHANGED
@@ -130,6 +130,8 @@ const addEndpoint = (m: Awaited<ReturnType<typeof processModel>>) => ({
|
|
130 |
return endpoints.ollama(args);
|
131 |
case "vertex":
|
132 |
return await endpoints.vertex(args);
|
|
|
|
|
133 |
default:
|
134 |
// for legacy reason
|
135 |
return endpoints.tgi(args);
|
|
|
130 |
return endpoints.ollama(args);
|
131 |
case "vertex":
|
132 |
return await endpoints.vertex(args);
|
133 |
+
case "cloudflare":
|
134 |
+
return await endpoints.cloudflare(args);
|
135 |
default:
|
136 |
// for legacy reason
|
137 |
return endpoints.tgi(args);
|