Spaces:
Runtime error
Runtime error
app.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "view-in-github",
|
7 |
+
"colab_type": "text"
|
8 |
+
},
|
9 |
+
"source": [
|
10 |
+
"<a href=\"https://colab.research.google.com/github/qunash/stable-diffusion-2-gui/blob/main/stable_diffusion_2_0.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "markdown",
|
15 |
+
"metadata": {
|
16 |
+
"id": "620o1BxdNbgq"
|
17 |
+
},
|
18 |
+
"source": [
|
19 |
+
"# **Stable Diffusion 2.1**\n",
|
20 |
+
"Gradio app for [Stable Diffusion 2](https://huggingface.co/stabilityai/stable-diffusion-2) by [Stability AI](https://stability.ai/) (v2-1_768-ema-pruned.ckpt).\n",
|
21 |
+
"It uses [Hugging Face](https://huggingface.co/) Diffusers🧨 implementation.\n",
|
22 |
+
"\n",
|
23 |
+
"Currently supported pipelines are `text-to-image`, `image-to-image`, `inpainting`, `4x upscaling` and `depth-to-image`.\n",
|
24 |
+
"\n",
|
25 |
+
"<br>\n",
|
26 |
+
"\n",
|
27 |
+
"Colab by [anzorq](https://twitter.com/hahahahohohe). If you like it, please consider supporting me:\n",
|
28 |
+
"\n",
|
29 |
+
"[<a href=\"https://www.buymeacoffee.com/anzorq\" target=\"_blank\"><img src=\"https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png\" height=\"32px\" width=\"108px\" alt=\"Buy Me A Coffee\"></a>](https://www.buymeacoffee.com/anzorq)\n",
|
30 |
+
"<br>\n",
|
31 |
+
"[![GitHub Repo stars](https://img.shields.io/github/stars/qunash/stable-diffusion-2-gui?style=social)](https://github.com/qunash/stable-diffusion-2-gui)\n",
|
32 |
+
"\n",
|
33 |
+
"![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.sd-2-colab-header)"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "markdown",
|
38 |
+
"metadata": {
|
39 |
+
"id": "KQI4RX20DW_8"
|
40 |
+
},
|
41 |
+
"source": [
|
42 |
+
"# Install dependencies (~1.5 mins)"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"metadata": {
|
49 |
+
"id": "78HoqRAB-cES",
|
50 |
+
"cellView": "form"
|
51 |
+
},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"!pip install --upgrade git+https://github.com/huggingface/diffusers.git\n",
|
55 |
+
"# !pip install diffusers\n",
|
56 |
+
"!pip install --upgrade git+https://github.com/huggingface/transformers/\n",
|
57 |
+
"# !pip install transformers\n",
|
58 |
+
"!pip install accelerate==0.12.0\n",
|
59 |
+
"!pip install scipy\n",
|
60 |
+
"!pip install ftfy\n",
|
61 |
+
"!pip install gradio -q\n",
|
62 |
+
"\n",
|
63 |
+
"#@markdown ### ⬅️ Run this cell\n",
|
64 |
+
"#@markdown ---\n",
|
65 |
+
"#@markdown ### Install **xformers**?\n",
|
66 |
+
"#@markdown This will take an additional ~3.5 mins.<br>But images will generate 25-40% faster.\n",
|
67 |
+
"install_xformers = False #@param {type:\"boolean\"}\n",
|
68 |
+
"\n",
|
69 |
+
"if install_xformers:\n",
|
70 |
+
" import os\n",
|
71 |
+
" from subprocess import getoutput\n",
|
72 |
+
"\n",
|
73 |
+
" os.system(\"pip install --extra-index-url https://download.pytorch.org/whl/cu113 torch torchvision==0.13.1+cu113\")\n",
|
74 |
+
" os.system(\"pip install triton==2.0.0.dev20220701\")\n",
|
75 |
+
" gpu_info = getoutput('nvidia-smi')\n",
|
76 |
+
" if(\"A10G\" in gpu_info):\n",
|
77 |
+
" os.system(f\"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+4c06c79.d20221205-cp38-cp38-linux_x86_64.whl\")\n",
|
78 |
+
" elif(\"T4\" in gpu_info):\n",
|
79 |
+
" os.system(f\"pip install -q https://github.com/camenduru/stable-diffusion-webui-colab/releases/download/0.0.15/xformers-0.0.15.dev0+1515f77.d20221130-cp38-cp38-linux_x86_64.whl\")\n",
|
80 |
+
"\n",
|
81 |
+
"\n",
|
82 |
+
"# ### install xformers\n",
|
83 |
+
"# from IPython.utils import capture\n",
|
84 |
+
"# from subprocess import getoutput\n",
|
85 |
+
"# from re import search\n",
|
86 |
+
"\n",
|
87 |
+
"# with capture.capture_output() as cap:\n",
|
88 |
+
" \n",
|
89 |
+
"# smi_out = getoutput('nvidia-smi')\n",
|
90 |
+
"# supported = search('(T4|P100|V100|A100|K80)', smi_out)\n",
|
91 |
+
"\n",
|
92 |
+
"# if not supported:\n",
|
93 |
+
"# while True:\n",
|
94 |
+
"# print(\"\\x1b[1;31mThe current GPU is not supported, try starting a new session.\\x1b[0m\")\n",
|
95 |
+
"# else:\n",
|
96 |
+
"# supported = supported.group(0)\n",
|
97 |
+
"\n",
|
98 |
+
"# !pip install -q https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/{supported}/xformers-0.0.13.dev0-py3-none-any.whl\n",
|
99 |
+
"# !pip install -q https://github.com/ShivamShrirao/xformers-wheels/releases/download/4c06c79/xformers-0.0.15.dev0+4c06c79.d20221201-cp38-cp38-linux_x86_64.whl"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "markdown",
|
104 |
+
"metadata": {
|
105 |
+
"id": "OOPHNsFYDbc0"
|
106 |
+
},
|
107 |
+
"source": [
|
108 |
+
"# Run the app"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": null,
|
114 |
+
"metadata": {
|
115 |
+
"cellView": "form",
|
116 |
+
"id": "gId0-asCBVwL"
|
117 |
+
},
|
118 |
+
"outputs": [],
|
119 |
+
"source": [
|
120 |
+
"#@title ⬇️🖼️\n",
|
121 |
+
"from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionUpscalePipeline, DiffusionPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler\n",
|
122 |
+
"import gradio as gr\n",
|
123 |
+
"import torch\n",
|
124 |
+
"from PIL import Image\n",
|
125 |
+
"import random\n",
|
126 |
+
"\n",
|
127 |
+
"state = None\n",
|
128 |
+
"current_steps = 25\n",
|
129 |
+
"attn_slicing_enabled = True\n",
|
130 |
+
"mem_eff_attn_enabled = install_xformers\n",
|
131 |
+
"\n",
|
132 |
+
"# model_id = 'stabilityai/stable-diffusion-2'\n",
|
133 |
+
"model_id = 'stabilityai/stable-diffusion-2-1'\n",
|
134 |
+
"\n",
|
135 |
+
"scheduler = DPMSolverMultistepScheduler.from_pretrained(model_id, subfolder=\"scheduler\")\n",
|
136 |
+
"\n",
|
137 |
+
"pipe = StableDiffusionPipeline.from_pretrained(\n",
|
138 |
+
" model_id,\n",
|
139 |
+
" revision=\"fp16\" if torch.cuda.is_available() else \"fp32\",\n",
|
140 |
+
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
|
141 |
+
" scheduler=scheduler\n",
|
142 |
+
" ).to(\"cuda\")\n",
|
143 |
+
"pipe.enable_attention_slicing()\n",
|
144 |
+
"if mem_eff_attn_enabled:\n",
|
145 |
+
" pipe.enable_xformers_memory_efficient_attention()\n",
|
146 |
+
"\n",
|
147 |
+
"pipe_i2i = None\n",
|
148 |
+
"pipe_upscale = None\n",
|
149 |
+
"pipe_inpaint = None\n",
|
150 |
+
"pipe_depth2img = None\n",
|
151 |
+
"\n",
|
152 |
+
"\n",
|
153 |
+
"modes = {\n",
|
154 |
+
" 'txt2img': 'Text to Image',\n",
|
155 |
+
" 'img2img': 'Image to Image',\n",
|
156 |
+
" 'inpaint': 'Inpainting',\n",
|
157 |
+
" 'upscale4x': 'Upscale 4x',\n",
|
158 |
+
" 'depth2img': 'Depth to Image'\n",
|
159 |
+
"}\n",
|
160 |
+
"current_mode = modes['txt2img']\n",
|
161 |
+
"\n",
|
162 |
+
"def error_str(error, title=\"Error\"):\n",
|
163 |
+
" return f\"\"\"#### {title}\n",
|
164 |
+
" {error}\"\"\" if error else \"\"\n",
|
165 |
+
"\n",
|
166 |
+
"def update_state(new_state):\n",
|
167 |
+
" global state\n",
|
168 |
+
" state = new_state\n",
|
169 |
+
"\n",
|
170 |
+
"def update_state_info(old_state):\n",
|
171 |
+
" if state and state != old_state:\n",
|
172 |
+
" return gr.update(value=state)\n",
|
173 |
+
"\n",
|
174 |
+
"def set_mem_optimizations(pipe):\n",
|
175 |
+
" if attn_slicing_enabled:\n",
|
176 |
+
" pipe.enable_attention_slicing()\n",
|
177 |
+
" else:\n",
|
178 |
+
" pipe.disable_attention_slicing()\n",
|
179 |
+
" \n",
|
180 |
+
" if mem_eff_attn_enabled:\n",
|
181 |
+
" pipe.enable_xformers_memory_efficient_attention()\n",
|
182 |
+
" else:\n",
|
183 |
+
" pipe.disable_xformers_memory_efficient_attention()\n",
|
184 |
+
"\n",
|
185 |
+
"def get_i2i_pipe(scheduler):\n",
|
186 |
+
" \n",
|
187 |
+
" update_state(\"Loading image to image model...\")\n",
|
188 |
+
"\n",
|
189 |
+
" pipe = StableDiffusionImg2ImgPipeline.from_pretrained(\n",
|
190 |
+
" model_id,\n",
|
191 |
+
" revision=\"fp16\" if torch.cuda.is_available() else \"fp32\",\n",
|
192 |
+
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
|
193 |
+
" scheduler=scheduler\n",
|
194 |
+
" )\n",
|
195 |
+
" set_mem_optimizations(pipe)\n",
|
196 |
+
" pipe.to(\"cuda\")\n",
|
197 |
+
" return pipe\n",
|
198 |
+
"\n",
|
199 |
+
"def get_inpaint_pipe():\n",
|
200 |
+
" \n",
|
201 |
+
" update_state(\"Loading inpainting model...\")\n",
|
202 |
+
"\n",
|
203 |
+
" pipe = DiffusionPipeline.from_pretrained(\n",
|
204 |
+
" \"stabilityai/stable-diffusion-2-inpainting\",\n",
|
205 |
+
" revision=\"fp16\" if torch.cuda.is_available() else \"fp32\",\n",
|
206 |
+
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
|
207 |
+
" # scheduler=scheduler # TODO currently setting scheduler here messes up the end result. A bug in Diffusers🧨\n",
|
208 |
+
" ).to(\"cuda\")\n",
|
209 |
+
" pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)\n",
|
210 |
+
" pipe.enable_attention_slicing()\n",
|
211 |
+
" pipe.enable_xformers_memory_efficient_attention()\n",
|
212 |
+
" return pipe\n",
|
213 |
+
"\n",
|
214 |
+
"def get_upscale_pipe(scheduler):\n",
|
215 |
+
" \n",
|
216 |
+
" update_state(\"Loading upscale model...\")\n",
|
217 |
+
"\n",
|
218 |
+
" pipe = StableDiffusionUpscalePipeline.from_pretrained(\n",
|
219 |
+
" \"stabilityai/stable-diffusion-x4-upscaler\",\n",
|
220 |
+
" revision=\"fp16\" if torch.cuda.is_available() else \"fp32\",\n",
|
221 |
+
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
|
222 |
+
" # scheduler=scheduler\n",
|
223 |
+
" )\n",
|
224 |
+
" # pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)\n",
|
225 |
+
" set_mem_optimizations(pipe)\n",
|
226 |
+
" pipe.to(\"cuda\")\n",
|
227 |
+
" return pipe\n",
|
228 |
+
" \n",
|
229 |
+
"def get_depth2img_pipe():\n",
|
230 |
+
" \n",
|
231 |
+
" update_state(\"Loading depth to image model...\")\n",
|
232 |
+
"\n",
|
233 |
+
" pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(\n",
|
234 |
+
" \"stabilityai/stable-diffusion-2-depth\",\n",
|
235 |
+
" revision=\"fp16\" if torch.cuda.is_available() else \"fp32\",\n",
|
236 |
+
" torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,\n",
|
237 |
+
" # scheduler=scheduler\n",
|
238 |
+
" )\n",
|
239 |
+
" pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)\n",
|
240 |
+
" set_mem_optimizations(pipe)\n",
|
241 |
+
" pipe.to(\"cuda\")\n",
|
242 |
+
" return pipe\n",
|
243 |
+
"\n",
|
244 |
+
"def switch_attention_slicing(attn_slicing):\n",
|
245 |
+
" global attn_slicing_enabled\n",
|
246 |
+
" attn_slicing_enabled = attn_slicing\n",
|
247 |
+
"\n",
|
248 |
+
"def switch_mem_eff_attn(mem_eff_attn):\n",
|
249 |
+
" global mem_eff_attn_enabled\n",
|
250 |
+
" mem_eff_attn_enabled = mem_eff_attn\n",
|
251 |
+
"\n",
|
252 |
+
"def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):\n",
|
253 |
+
" update_state(f\"{step}/{current_steps} steps\")#\\nTime left, sec: {timestep/100:.0f}\")\n",
|
254 |
+
"\n",
|
255 |
+
"def inference(inf_mode, prompt, n_images, guidance, steps, width=768, height=768, seed=0, img=None, strength=0.5, neg_prompt=\"\"):\n",
|
256 |
+
"\n",
|
257 |
+
" update_state(\" \")\n",
|
258 |
+
"\n",
|
259 |
+
" global current_mode\n",
|
260 |
+
" if inf_mode != current_mode:\n",
|
261 |
+
" pipe.to(\"cuda\" if inf_mode == modes['txt2img'] else \"cpu\")\n",
|
262 |
+
"\n",
|
263 |
+
" if pipe_i2i is not None:\n",
|
264 |
+
" pipe_i2i.to(\"cuda\" if inf_mode == modes['img2img'] else \"cpu\")\n",
|
265 |
+
"\n",
|
266 |
+
" if pipe_inpaint is not None:\n",
|
267 |
+
" pipe_inpaint.to(\"cuda\" if inf_mode == modes['inpaint'] else \"cpu\")\n",
|
268 |
+
"\n",
|
269 |
+
" if pipe_upscale is not None:\n",
|
270 |
+
" pipe_upscale.to(\"cuda\" if inf_mode == modes['upscale4x'] else \"cpu\")\n",
|
271 |
+
" \n",
|
272 |
+
" if pipe_depth2img is not None:\n",
|
273 |
+
" pipe_depth2img.to(\"cuda\" if inf_mode == modes['depth2img'] else \"cpu\")\n",
|
274 |
+
"\n",
|
275 |
+
" current_mode = inf_mode\n",
|
276 |
+
" \n",
|
277 |
+
" if seed == 0:\n",
|
278 |
+
" seed = random.randint(0, 2147483647)\n",
|
279 |
+
"\n",
|
280 |
+
" generator = torch.Generator('cuda').manual_seed(seed)\n",
|
281 |
+
" prompt = prompt\n",
|
282 |
+
"\n",
|
283 |
+
" try:\n",
|
284 |
+
" \n",
|
285 |
+
" if inf_mode == modes['txt2img']:\n",
|
286 |
+
" return txt_to_img(prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), gr.update(visible=False, value=None)\n",
|
287 |
+
" \n",
|
288 |
+
" elif inf_mode == modes['img2img']:\n",
|
289 |
+
" if img is None:\n",
|
290 |
+
" return None, gr.update(visible=True, value=error_str(\"Image is required for Image to Image mode\"))\n",
|
291 |
+
"\n",
|
292 |
+
" return img_to_img(prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), gr.update(visible=False, value=None)\n",
|
293 |
+
" \n",
|
294 |
+
" elif inf_mode == modes['inpaint']:\n",
|
295 |
+
" if img is None:\n",
|
296 |
+
" return None, gr.update(visible=True, value=error_str(\"Image is required for Inpainting mode\"))\n",
|
297 |
+
"\n",
|
298 |
+
" return inpaint(prompt, n_images, neg_prompt, img, guidance, steps, width, height, generator, seed), gr.update(visible=False, value=None)\n",
|
299 |
+
"\n",
|
300 |
+
" elif inf_mode == modes['upscale4x']:\n",
|
301 |
+
" if img is None:\n",
|
302 |
+
" return None, gr.update(visible=True, value=error_str(\"Image is required for Upscale mode\"))\n",
|
303 |
+
"\n",
|
304 |
+
" return upscale(prompt, n_images, neg_prompt, img, guidance, steps, generator), gr.update(visible=False, value=None)\n",
|
305 |
+
"\n",
|
306 |
+
" elif inf_mode == modes['depth2img']:\n",
|
307 |
+
" if img is None:\n",
|
308 |
+
" return None, gr.update(visible=True, value=error_str(\"Image is required for Depth to Image mode\"))\n",
|
309 |
+
"\n",
|
310 |
+
" return depth2img(prompt, n_images, neg_prompt, img, guidance, steps, generator, seed), gr.update(visible=False, value=None)\n",
|
311 |
+
"\n",
|
312 |
+
" except Exception as e:\n",
|
313 |
+
" return None, gr.update(visible=True, value=error_str(e))\n",
|
314 |
+
"\n",
|
315 |
+
"def txt_to_img(prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):\n",
|
316 |
+
"\n",
|
317 |
+
" result = pipe(\n",
|
318 |
+
" prompt,\n",
|
319 |
+
" num_images_per_prompt = n_images,\n",
|
320 |
+
" negative_prompt = neg_prompt,\n",
|
321 |
+
" num_inference_steps = int(steps),\n",
|
322 |
+
" guidance_scale = guidance,\n",
|
323 |
+
" width = width,\n",
|
324 |
+
" height = height,\n",
|
325 |
+
" generator = generator,\n",
|
326 |
+
" callback=pipe_callback).images\n",
|
327 |
+
"\n",
|
328 |
+
" update_state(f\"Done. Seed: {seed}\")\n",
|
329 |
+
"\n",
|
330 |
+
" return result\n",
|
331 |
+
"\n",
|
332 |
+
"def img_to_img(prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):\n",
|
333 |
+
"\n",
|
334 |
+
" global pipe_i2i\n",
|
335 |
+
" if pipe_i2i is None:\n",
|
336 |
+
" pipe_i2i = get_i2i_pipe(scheduler)\n",
|
337 |
+
"\n",
|
338 |
+
" img = img['image']\n",
|
339 |
+
" ratio = min(height / img.height, width / img.width)\n",
|
340 |
+
" img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)\n",
|
341 |
+
" result = pipe_i2i(\n",
|
342 |
+
" prompt,\n",
|
343 |
+
" num_images_per_prompt = n_images,\n",
|
344 |
+
" negative_prompt = neg_prompt,\n",
|
345 |
+
" image = img,\n",
|
346 |
+
" num_inference_steps = int(steps),\n",
|
347 |
+
" strength = strength,\n",
|
348 |
+
" guidance_scale = guidance,\n",
|
349 |
+
" # width = width,\n",
|
350 |
+
" # height = height,\n",
|
351 |
+
" generator = generator,\n",
|
352 |
+
" callback=pipe_callback).images\n",
|
353 |
+
"\n",
|
354 |
+
" update_state(f\"Done. Seed: {seed}\")\n",
|
355 |
+
" \n",
|
356 |
+
" return result\n",
|
357 |
+
"\n",
|
358 |
+
"# TODO Currently supports only 512x512 images\n",
|
359 |
+
"def inpaint(prompt, n_images, neg_prompt, img, guidance, steps, width, height, generator, seed):\n",
|
360 |
+
"\n",
|
361 |
+
" global pipe_inpaint\n",
|
362 |
+
" if pipe_inpaint is None:\n",
|
363 |
+
" pipe_inpaint = get_inpaint_pipe()\n",
|
364 |
+
"\n",
|
365 |
+
" inp_img = img['image']\n",
|
366 |
+
" mask = img['mask']\n",
|
367 |
+
" inp_img = square_padding(inp_img)\n",
|
368 |
+
" mask = square_padding(mask)\n",
|
369 |
+
"\n",
|
370 |
+
" # # ratio = min(height / inp_img.height, width / inp_img.width)\n",
|
371 |
+
" # ratio = min(512 / inp_img.height, 512 / inp_img.width)\n",
|
372 |
+
" # inp_img = inp_img.resize((int(inp_img.width * ratio), int(inp_img.height * ratio)), Image.LANCZOS)\n",
|
373 |
+
" # mask = mask.resize((int(mask.width * ratio), int(mask.height * ratio)), Image.LANCZOS)\n",
|
374 |
+
"\n",
|
375 |
+
" inp_img = inp_img.resize((512, 512))\n",
|
376 |
+
" mask = mask.resize((512, 512))\n",
|
377 |
+
"\n",
|
378 |
+
" result = pipe_inpaint(\n",
|
379 |
+
" prompt,\n",
|
380 |
+
" image = inp_img,\n",
|
381 |
+
" mask_image = mask,\n",
|
382 |
+
" num_images_per_prompt = n_images,\n",
|
383 |
+
" negative_prompt = neg_prompt,\n",
|
384 |
+
" num_inference_steps = int(steps),\n",
|
385 |
+
" guidance_scale = guidance,\n",
|
386 |
+
" # width = width,\n",
|
387 |
+
" # height = height,\n",
|
388 |
+
" generator = generator,\n",
|
389 |
+
" callback=pipe_callback).images\n",
|
390 |
+
" \n",
|
391 |
+
" update_state(f\"Done. Seed: {seed}\")\n",
|
392 |
+
"\n",
|
393 |
+
" return result\n",
|
394 |
+
"\n",
|
395 |
+
"def depth2img(prompt, n_images, neg_prompt, img, guidance, steps, generator, seed):\n",
|
396 |
+
"\n",
|
397 |
+
" global pipe_depth2img\n",
|
398 |
+
" if pipe_depth2img is None:\n",
|
399 |
+
" pipe_depth2img = get_depth2img_pipe()\n",
|
400 |
+
"\n",
|
401 |
+
" img = img['image']\n",
|
402 |
+
" result = pipe_depth2img(\n",
|
403 |
+
" prompt,\n",
|
404 |
+
" num_images_per_prompt = n_images,\n",
|
405 |
+
" negative_prompt = neg_prompt,\n",
|
406 |
+
" image = img,\n",
|
407 |
+
" num_inference_steps = int(steps),\n",
|
408 |
+
" guidance_scale = guidance,\n",
|
409 |
+
" # width = width,\n",
|
410 |
+
" # height = height,\n",
|
411 |
+
" generator = generator,\n",
|
412 |
+
" callback=pipe_callback).images\n",
|
413 |
+
"\n",
|
414 |
+
" update_state(f\"Done. Seed: {seed}\")\n",
|
415 |
+
" \n",
|
416 |
+
" return result\n",
|
417 |
+
"\n",
|
418 |
+
"def square_padding(img):\n",
|
419 |
+
" width, height = img.size\n",
|
420 |
+
" if width == height:\n",
|
421 |
+
" return img\n",
|
422 |
+
" new_size = max(width, height)\n",
|
423 |
+
" new_img = Image.new('RGB', (new_size, new_size), (0, 0, 0, 255))\n",
|
424 |
+
" new_img.paste(img, ((new_size - width) // 2, (new_size - height) // 2))\n",
|
425 |
+
" return new_img\n",
|
426 |
+
"\n",
|
427 |
+
"def upscale(prompt, n_images, neg_prompt, img, guidance, steps, generator):\n",
|
428 |
+
"\n",
|
429 |
+
" global pipe_upscale\n",
|
430 |
+
" if pipe_upscale is None:\n",
|
431 |
+
" pipe_upscale = get_upscale_pipe(scheduler)\n",
|
432 |
+
"\n",
|
433 |
+
" img = img['image']\n",
|
434 |
+
" return upscale_tiling(prompt, neg_prompt, img, guidance, steps, generator)\n",
|
435 |
+
"\n",
|
436 |
+
" # result = pipe_upscale(\n",
|
437 |
+
" # prompt,\n",
|
438 |
+
" # image = img,\n",
|
439 |
+
" # num_inference_steps = int(steps),\n",
|
440 |
+
" # guidance_scale = guidance,\n",
|
441 |
+
" # negative_prompt = neg_prompt,\n",
|
442 |
+
" # num_images_per_prompt = n_images,\n",
|
443 |
+
" # generator = generator).images[0]\n",
|
444 |
+
"\n",
|
445 |
+
" # return result\n",
|
446 |
+
"\n",
|
447 |
+
"def upscale_tiling(prompt, neg_prompt, img, guidance, steps, generator):\n",
|
448 |
+
"\n",
|
449 |
+
" width, height = img.size\n",
|
450 |
+
"\n",
|
451 |
+
" # calculate the padding needed to make the image dimensions a multiple of 128\n",
|
452 |
+
" padding_x = 128 - (width % 128) if width % 128 != 0 else 0\n",
|
453 |
+
" padding_y = 128 - (height % 128) if height % 128 != 0 else 0\n",
|
454 |
+
"\n",
|
455 |
+
" # create a white image of the right size to be used as padding\n",
|
456 |
+
" padding_img = Image.new('RGB', (padding_x, padding_y), color=(255, 255, 255, 0))\n",
|
457 |
+
"\n",
|
458 |
+
" # paste the padding image onto the original image to add the padding\n",
|
459 |
+
" img.paste(padding_img, (width, height))\n",
|
460 |
+
"\n",
|
461 |
+
" # update the image dimensions to include the padding\n",
|
462 |
+
" width += padding_x\n",
|
463 |
+
" height += padding_y\n",
|
464 |
+
"\n",
|
465 |
+
" if width > 128 or height > 128:\n",
|
466 |
+
"\n",
|
467 |
+
" num_tiles_x = int(width / 128)\n",
|
468 |
+
" num_tiles_y = int(height / 128)\n",
|
469 |
+
"\n",
|
470 |
+
" upscaled_img = Image.new('RGB', (img.size[0] * 4, img.size[1] * 4))\n",
|
471 |
+
" for x in range(num_tiles_x):\n",
|
472 |
+
" for y in range(num_tiles_y):\n",
|
473 |
+
" update_state(f\"Upscaling tile {x * num_tiles_y + y + 1}/{num_tiles_x * num_tiles_y}\")\n",
|
474 |
+
" tile = img.crop((x * 128, y * 128, (x + 1) * 128, (y + 1) * 128))\n",
|
475 |
+
"\n",
|
476 |
+
" upscaled_tile = pipe_upscale(\n",
|
477 |
+
" prompt=\"\",\n",
|
478 |
+
" image=tile,\n",
|
479 |
+
" num_inference_steps=steps,\n",
|
480 |
+
" guidance_scale=guidance,\n",
|
481 |
+
" # negative_prompt = neg_prompt,\n",
|
482 |
+
" generator=generator,\n",
|
483 |
+
" ).images[0]\n",
|
484 |
+
"\n",
|
485 |
+
" upscaled_img.paste(upscaled_tile, (x * upscaled_tile.size[0], y * upscaled_tile.size[1]))\n",
|
486 |
+
"\n",
|
487 |
+
" return [upscaled_img]\n",
|
488 |
+
" else:\n",
|
489 |
+
" return pipe_upscale(\n",
|
490 |
+
" prompt=prompt,\n",
|
491 |
+
" image=img,\n",
|
492 |
+
" num_inference_steps=steps,\n",
|
493 |
+
" guidance_scale=guidance,\n",
|
494 |
+
" negative_prompt = neg_prompt,\n",
|
495 |
+
" generator=generator,\n",
|
496 |
+
" ).images\n",
|
497 |
+
"\n",
|
498 |
+
"\n",
|
499 |
+
"\n",
|
500 |
+
"def on_mode_change(mode):\n",
|
501 |
+
" return gr.update(visible = mode in (modes['img2img'], modes['inpaint'], modes['upscale4x'], modes['depth2img'])), \\\n",
|
502 |
+
" gr.update(visible = mode == modes['inpaint']), \\\n",
|
503 |
+
" gr.update(visible = mode == modes['upscale4x']), \\\n",
|
504 |
+
" gr.update(visible = mode == modes['img2img'])\n",
|
505 |
+
"\n",
|
506 |
+
"def on_steps_change(steps):\n",
|
507 |
+
" global current_steps\n",
|
508 |
+
" current_steps = steps\n",
|
509 |
+
"\n",
|
510 |
+
"css = \"\"\".main-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.main-div div h1{font-weight:900;margin-bottom:7px}.main-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}\n",
|
511 |
+
"\"\"\"\n",
|
512 |
+
"with gr.Blocks(css=css) as demo:\n",
|
513 |
+
" gr.HTML(\n",
|
514 |
+
" f\"\"\"\n",
|
515 |
+
" <div class=\"main-div\">\n",
|
516 |
+
" <div>\n",
|
517 |
+
" <h1>Stable Diffusion 2.1</h1>\n",
|
518 |
+
" </div><br>\n",
|
519 |
+
" <p> Model used: <a href=\"https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.ckpt\" target=\"_blank\">v2-1_768-ema-pruned.ckpt</a></p>\n",
|
520 |
+
" Running on <b>{\"GPU 🔥\" if torch.cuda.is_available() else \"CPU 🥶\"}</b>\n",
|
521 |
+
" </div>\n",
|
522 |
+
" \"\"\"\n",
|
523 |
+
" )\n",
|
524 |
+
" with gr.Row():\n",
|
525 |
+
" \n",
|
526 |
+
" with gr.Column(scale=70):\n",
|
527 |
+
" with gr.Group():\n",
|
528 |
+
" with gr.Row():\n",
|
529 |
+
" prompt = gr.Textbox(label=\"Prompt\", show_label=False, max_lines=2,placeholder=f\"Enter prompt\").style(container=False)\n",
|
530 |
+
" generate = gr.Button(value=\"Generate\").style(rounded=(False, True, True, False))\n",
|
531 |
+
"\n",
|
532 |
+
" gallery = gr.Gallery(label=\"Generated images\", show_label=False).style(grid=[2], height=\"auto\")\n",
|
533 |
+
" state_info = gr.Textbox(label=\"State\", show_label=False, max_lines=2).style(container=False)\n",
|
534 |
+
" error_output = gr.Markdown(visible=False)\n",
|
535 |
+
"\n",
|
536 |
+
" with gr.Column(scale=30):\n",
|
537 |
+
" inf_mode = gr.Radio(label=\"Inference Mode\", choices=list(modes.values()), value=modes['txt2img'])\n",
|
538 |
+
" \n",
|
539 |
+
" with gr.Group(visible=False) as i2i_options:\n",
|
540 |
+
" image = gr.Image(label=\"Image\", height=128, type=\"pil\", tool='sketch')\n",
|
541 |
+
" inpaint_info = gr.Markdown(\"Inpainting resizes and pads images to 512x512\", visible=False)\n",
|
542 |
+
" upscale_info = gr.Markdown(\"\"\"Best for small images (128x128 or smaller).<br>\n",
|
543 |
+
" Bigger images will be sliced into 128x128 tiles which will be upscaled individually.<br>\n",
|
544 |
+
" This is done to avoid running out of GPU memory.\"\"\", visible=False)\n",
|
545 |
+
" strength = gr.Slider(label=\"Transformation strength\", minimum=0, maximum=1, step=0.01, value=0.5)\n",
|
546 |
+
"\n",
|
547 |
+
" with gr.Group():\n",
|
548 |
+
" neg_prompt = gr.Textbox(label=\"Negative prompt\", placeholder=\"What to exclude from the image\")\n",
|
549 |
+
"\n",
|
550 |
+
" n_images = gr.Slider(label=\"Number of images\", value=1, minimum=1, maximum=4, step=1)\n",
|
551 |
+
" with gr.Row():\n",
|
552 |
+
" guidance = gr.Slider(label=\"Guidance scale\", value=7.5, maximum=15)\n",
|
553 |
+
" steps = gr.Slider(label=\"Steps\", value=current_steps, minimum=2, maximum=100, step=1)\n",
|
554 |
+
"\n",
|
555 |
+
" with gr.Row():\n",
|
556 |
+
" width = gr.Slider(label=\"Width\", value=768, minimum=64, maximum=1024, step=8)\n",
|
557 |
+
" height = gr.Slider(label=\"Height\", value=768, minimum=64, maximum=1024, step=8)\n",
|
558 |
+
"\n",
|
559 |
+
" seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)\n",
|
560 |
+
" with gr.Accordion(\"Memory optimization\"):\n",
|
561 |
+
" attn_slicing = gr.Checkbox(label=\"Attention slicing (a bit slower, but uses less memory)\", value=attn_slicing_enabled)\n",
|
562 |
+
" # mem_eff_attn = gr.Checkbox(label=\"Memory efficient attention (xformers)\", value=mem_eff_attn_enabled)\n",
|
563 |
+
"\n",
|
564 |
+
" inf_mode.change(on_mode_change, inputs=[inf_mode], outputs=[i2i_options, inpaint_info, upscale_info, strength], queue=False)\n",
|
565 |
+
" steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)\n",
|
566 |
+
" attn_slicing.change(lambda x: switch_attention_slicing(x), inputs=[attn_slicing], queue=False)\n",
|
567 |
+
" # mem_eff_attn.change(lambda x: switch_mem_eff_attn(x), inputs=[mem_eff_attn], queue=False)\n",
|
568 |
+
"\n",
|
569 |
+
" inputs = [inf_mode, prompt, n_images, guidance, steps, width, height, seed, image, strength, neg_prompt]\n",
|
570 |
+
" outputs = [gallery, error_output]\n",
|
571 |
+
" prompt.submit(inference, inputs=inputs, outputs=outputs)\n",
|
572 |
+
" generate.click(inference, inputs=inputs, outputs=outputs)\n",
|
573 |
+
"\n",
|
574 |
+
" demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)\n",
|
575 |
+
"\n",
|
576 |
+
" gr.HTML(\"\"\"\n",
|
577 |
+
" <div style=\"border-top: 1px solid #303030;\">\n",
|
578 |
+
" <br>\n",
|
579 |
+
" <p>Space by: <a href=\"https://twitter.com/hahahahohohe\"><img src=\"https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social\" alt=\"Twitter Follow\"></a></p><br>\n",
|
580 |
+
" <p>Enjoying this app? Please consider <a href=\"https://www.buymeacoffee.com/anzorq\">supporting me</a></p>\n",
|
581 |
+
" <a href=\"https://www.buymeacoffee.com/anzorq\" target=\"_blank\"><img src=\"https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png\" alt=\"Buy Me A Coffee\" style=\"height: 45px !important;width: 162px !important;\" ></a><br><br>\n",
|
582 |
+
" <a href=\"https://github.com/qunash/stable-diffusion-2-gui\" target=\"_blank\"><img alt=\"GitHub Repo stars\" src=\"https://img.shields.io/github/stars/qunash/stable-diffusion-2-gui?style=social\"></a>\n",
|
583 |
+
" <p><img src=\"https://visitor-badge.glitch.me/badge?page_id=anzorq.sd-2-colab\" alt=\"visitors\"></p>\n",
|
584 |
+
" </div>\n",
|
585 |
+
" \"\"\")\n",
|
586 |
+
"\n",
|
587 |
+
"demo.queue()\n",
|
588 |
+
"demo.launch(debug=True, share=True, height=768)\n"
|
589 |
+
]
|
590 |
+
}
|
591 |
+
],
|
592 |
+
"metadata": {
|
593 |
+
"accelerator": "GPU",
|
594 |
+
"colab": {
|
595 |
+
"private_outputs": true,
|
596 |
+
"provenance": [],
|
597 |
+
"toc_visible": true,
|
598 |
+
"include_colab_link": true
|
599 |
+
},
|
600 |
+
"gpuClass": "standard",
|
601 |
+
"kernelspec": {
|
602 |
+
"display_name": "Python 3",
|
603 |
+
"name": "python3"
|
604 |
+
},
|
605 |
+
"language_info": {
|
606 |
+
"name": "python"
|
607 |
+
}
|
608 |
+
},
|
609 |
+
"nbformat": 4,
|
610 |
+
"nbformat_minor": 0
|
611 |
+
}
|