File size: 1,684 Bytes
828458d
 
 
78588de
 
 
 
 
 
828458d
 
8c4485d
 
 
 
 
828458d
 
575d1cf
828458d
 
 
 
 
 
 
 
 
 
 
 
6d7ff83
 
 
575d1cf
 
 
 
6d7ff83
 
828458d
 
 
 
 
c4c7f48
828458d
 
575d1cf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from pathlib import Path
import json

from transformers import AutoModelForCausalLM


def get_num_parameters(model_name: str) -> int:
    return AutoModelForCausalLM.from_pretrained(model_name).num_parameters()


def main():
    evals_dir = Path(__file__).parent.joinpath("evals")
    pf_overview = evals_dir.joinpath("models.json")
    results = json.loads(pf_overview.read_text(encoding="utf-8")) if pf_overview.exists() else {}

    for pfin in evals_dir.rglob("*.json"):
        if pfin.stem == "models":
            continue
        short_name = pfin.stem.split("_", 2)[2].lower()
        data = json.loads(pfin.read_text(encoding="utf-8"))
        if "config" not in data:
            continue

        config = data["config"]
        if "model_args" not in config:
            continue

        model_args = dict(params.split("=") for params in config["model_args"].split(","))
        if "pretrained" not in model_args:
            continue

        results[short_name] = {
            "model_name": model_args["pretrained"],
            "compute_dtype": model_args.get("dtype", None),
            "quantization": None,
            "num_parameters": results[short_name]["num_parameters"]
            if short_name in results and "num_parameters" in results[short_name]
            else get_num_parameters(model_args["pretrained"]),
        }

        if "load_in_8bit" in model_args:
            results[short_name]["quantization"] = "8-bit"
        elif "load_in_4bit" in model_args:
            results[short_name]["quantization"] = "4-bit"

    pf_overview.write_text(json.dumps(results, indent=4, sort_keys=True), encoding="utf-8")


if __name__ == "__main__":
    main()