import json from pathlib import Path from huggingface_hub import get_safetensors_metadata from tqdm import tqdm from transformers import AutoModelForCausalLM def get_num_parameters(model_name: str) -> int: try: metadata = get_safetensors_metadata(model_name) return sum(metadata.parameter_count.values()) except Exception: return AutoModelForCausalLM.from_pretrained(model_name).num_parameters() def main(): evals_dir = Path(__file__).parent.joinpath("evals") pf_overview = evals_dir.joinpath("models.json") results = json.loads(pf_overview.read_text(encoding="utf-8")) if pf_overview.exists() else {} for pfin in tqdm(list(evals_dir.rglob("*.json")), desc="Generating overview JSON"): if pfin.stem == "models": continue short_name = pfin.stem.split("_", 2)[2].lower() data = json.loads(pfin.read_text(encoding="utf-8")) if "config" not in data: continue config = data["config"] if "model_args" not in config: continue model_args = dict(params.split("=") for params in config["model_args"].split(",")) if "pretrained" not in model_args: continue results[short_name] = { "model_name": model_args["pretrained"], "compute_dtype": model_args.get("dtype", None), "quantization": None, "num_parameters": results[short_name]["num_parameters"] if short_name in results and "num_parameters" in results[short_name] else get_num_parameters(model_args["pretrained"]), "model_type": results[short_name]["model_type"] if short_name in results and "model_type" in results[short_name] else "not-given", "dutch_coverage": results[short_name]["dutch_coverage"] if short_name in results and "dutch_coverage" in results[short_name] else "not-given", } if "load_in_8bit" in model_args: results[short_name]["quantization"] = "8-bit" elif "load_in_4bit" in model_args: results[short_name]["quantization"] = "4-bit" pf_overview.write_text(json.dumps(results, indent=4, sort_keys=True), encoding="utf-8") if __name__ == "__main__": main()