from pathlib import Path import json from pprint import pprint from transformers import AutoModelForCausalLM def get_num_parameters(model_name: str) -> int: return AutoModelForCausalLM.from_pretrained(model_name).num_parameters() def main(): evals_dir = Path(__file__).parent.joinpath("evals") pf_overview = evals_dir.joinpath("models.json") results = json.loads(pf_overview.read_text(encoding="utf-8")) if pf_overview.exists() else {} for pfin in evals_dir.rglob("*.json"): if pfin.stem == "models": continue short_name = pfin.stem.split("_")[2] if short_name in results: continue data = json.loads(pfin.read_text(encoding="utf-8")) if "config" not in data: continue config = data["config"] if "model_args" not in config: continue model_args = dict(params.split("=") for params in config["model_args"].split(",")) if "pretrained" not in model_args: continue results[short_name]["model_name"] = model_args["pretrained"] results[short_name]["compute_dtype"] = model_args.get("dtype", None) results[short_name]["quantization"] = None if "load_in_8bit" in model_args: results[short_name]["quantization"] = "8-bit" elif "load_in_4bit" in model_args: results[short_name]["quantization"] = "4-bit" results[short_name]["num_parameters"] = get_num_parameters(model_args["pretrained"]) pprint(results) pf_overview.write_text(json.dumps(results, indent=4), encoding="utf-8") if __name__ == '__main__': main()