import os import json import glob from collections import defaultdict import gradio as gr from content import * import glob ARC = "arc" HELLASWAG = "hellaswag" MMLU = "mmlu" TRUTHFULQA = "truthfulqa" BENCHMARKS = [ARC, HELLASWAG, MMLU, TRUTHFULQA] METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"] def collect_results(): performance_dict = defaultdict(dict) pretrained_models = set() for file in glob.glob('evals/*/*.json'): with open(file, 'r') as f: data = json.load(f) if 'results' not in data: continue if 'config' not in data: continue results = data['results'] config = data['config'] if 'model_args' not in config: continue model_args = config['model_args'].split(',') pretrained = [x for x in model_args if x.startswith('pretrained=')] if len(pretrained) != 1: continue pretrained = pretrained[0].split('=')[1] pretrained = pretrained.split('/')[-1] pretrained_models.add(pretrained) for lang_task, perfs in results.items(): task, lang = lang_task.split('_') assert task in BENCHMARKS if lang and task: metric = METRICS[BENCHMARKS.index(task)] p = round(perfs[metric] * 100, 1) performance_dict[(pretrained, lang)][task] = p return performance_dict, pretrained_models def get_leaderboard_df(performance_dict, pretrained_models): df = list() for (pretrained, lang), perfs in performance_dict.items(): arc_perf = perfs.get(ARC, 0.0) hellaswag_perf = perfs.get(HELLASWAG, 0.0) mmlu_perf = perfs.get(MMLU, 0.0) truthfulqa_perf = perfs.get(TRUTHFULQA, 0.0) if arc_perf * hellaswag_perf * mmlu_perf * truthfulqa_perf == 0: continue avg = round((arc_perf + hellaswag_perf + mmlu_perf + truthfulqa_perf) / 4, 1) row = [pretrained, lang, avg, arc_perf, hellaswag_perf, mmlu_perf, truthfulqa_perf] df.append(row) return df MODEL_COL = "Model" LANG_COL = "Language" AVERAGE_COL = "Average" ARC_COL = "ARC (25-shot)" HELLASWAG_COL = "HellaSwag (10-shot)️" MMLU_COL = "MMLU (5-shot)" TRUTHFULQA_COL = "TruthfulQA (0-shot)" COLS = [MODEL_COL, LANG_COL, AVERAGE_COL, ARC_COL, HELLASWAG_COL, MMLU_COL, TRUTHFULQA_COL] TYPES = ["str", "str", "number", "number", "number", "number", "number"] args = collect_results() leaderboard_df = get_leaderboard_df(*args) demo = gr.Blocks() with demo: gr.HTML(TITLE) gr.Markdown(INTRO_TEXT, elem_classes="markdown-text") gr.Markdown(HOW_TO, elem_classes="markdown-text") with gr.Box(): search_bar = gr.Textbox( placeholder="Search models...", show_label=False, elem_id="search-bar" ) leaderboard_table = gr.components.Dataframe( value=leaderboard_df, headers=COLS, datatype=TYPES, max_rows=5, elem_id="leaderboard-table", ) gr.Markdown(CITATION, elem_classes="markdown-text") demo.launch()