File size: 9,904 Bytes
79b4417
74a75f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f5ddc
74a75f8
 
 
60f5ddc
74a75f8
60f5ddc
 
74a75f8
e8d98e1
74a75f8
60f5ddc
 
 
 
 
 
 
 
 
 
 
 
 
79b4417
 
 
60f5ddc
79b4417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f5ddc
 
 
79b4417
60f5ddc
 
 
 
 
79b4417
60f5ddc
 
 
74a75f8
e8d98e1
60f5ddc
74a75f8
79b4417
 
 
 
 
 
 
 
74a75f8
 
60f5ddc
79b4417
74a75f8
e8d98e1
60f5ddc
79b4417
 
 
 
74a75f8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from datetime import date, datetime
import numpy as np
import pandas as pd
pd.set_option('chained_assignment',None)
pd.set_option('display.max_columns',None)
import os
import pickle as pkl
from Source.Predict.predict import predict

# get team abbreviations
with open('Source/Pickles/team_abbreviation_to_name.pkl', 'rb') as f:
    team_abbreviation_to_name = pkl.load(f)

# get this year's odds and results
gbg_and_odds_this_year = pd.read_csv('Source/Data/gbg_and_odds_this_year.csv')
results = pd.read_csv('Source/Data/results.csv')

# make predictions
from tqdm import tqdm
print("Predicting games and getting record")
predictions = {}
for game_id,home,away,season,week,total in tqdm(gbg_and_odds_this_year[['game_id','home_team','away_team','Season','GP','Total Score Close']].values):
    if week!=1:
        predictions[game_id] = predict(home,away,season,week,total)

# merge data
predictions_df = pd.DataFrame(predictions).T
predictions_df['predicted_winner'] = [i['Winner'][0] if type(i['Winner'])==list else None for i in predictions_df[1]]
predictions_df['predicted_winner'] = predictions_df['predicted_winner'].map(team_abbreviation_to_name)
predictions_df['predicted_winner_probability'] = [i['Probabilities'][0] if type(i['Probabilities'])==list else None for i in predictions_df[1]]
predictions_df['predicted_over_under'] = [i['Over/Under'][0] if type(i['Over/Under'])==list else None for i in predictions_df[2]]
predictions_df['predicted_over_under_probability'] = [i['Probability'][0] if type(i['Probability'])==list else None for i in predictions_df[2]]
predictions_df = predictions_df.merge(results, left_index=True, right_on='game_id').merge(gbg_and_odds_this_year[['game_id','Total Score Close','home_team','away_team','game_date','Home Odds Close','Away Odds Close']]).dropna(subset=['predicted_winner'])
predictions_df['over_under'] = ['Over' if t>tsc else 'Under' if t<tsc else 'Push' for t,tsc in predictions_df[['total','Total Score Close']].values]
predictions_df['game_date'] = pd.to_datetime(predictions_df['game_date'])

# get returns
predictions_df['home'] = predictions_df['home_team'].map(team_abbreviation_to_name)
predictions_df['away'] = predictions_df['away_team'].map(team_abbreviation_to_name)
predictions_df['picked_home'] = (predictions_df['home']==predictions_df['predicted_winner'])
predictions_df['picked_away'] = (predictions_df['away']==predictions_df['predicted_winner'])

predictions_df['winner_correct'] = (predictions_df['predicted_winner']==predictions_df['winner'])
predictions_df['winner_incorrect'] = ((predictions_df['predicted_winner']!=predictions_df['winner']) & (predictions_df['winner']!='Tie'))
predictions_df['winner_tie'] = (predictions_df['winner']=='Tie')
predictions_df['over_under_correct'] = (predictions_df['predicted_over_under']==predictions_df['over_under'])
predictions_df['over_under_incorrect'] = ((predictions_df['predicted_over_under']!=predictions_df['over_under']) & (predictions_df['over_under']!='Push'))
predictions_df['over_under_push'] = (predictions_df['over_under']=='Push')

predictions_df['winner_return'] = [0 if tie else ao-1 if (pa and wc) else ho-1 if (ph and wc) else -1 for ao,ho,pa,ph,wc,tie in predictions_df[['Away Odds Close','Home Odds Close','picked_away','picked_home','winner_correct','winner_tie']].values]
predictions_df['over_under_return'] = [0 if push else 0.91 if ouc else -1 for ouc,push in predictions_df[['over_under_correct','over_under_push']].values]
predictions_df = predictions_df.loc[predictions_df['game_date']>datetime(year=2023,month=9,day=19)]

# Save
predictions_df.to_csv('Source/Data/predictions.csv')
bins = np.arange(0.5, 1.05, 0.05)
bin_midpoints = [(bins[i] + bins[i+1]) / 2 for i in range(len(bins) - 1)]

predictions_df['winner_probability_bin'] = pd.cut(predictions_df['predicted_winner_probability'], bins=bins, labels=bin_midpoints)
predictions_df['over_under_probability_bin'] = pd.cut(predictions_df['predicted_over_under_probability'], bins=bins, labels=bin_midpoints)
winner_binned = predictions_df.groupby('winner_probability_bin')['winner_correct'].mean().reset_index()
over_under_binned = predictions_df.groupby('over_under_probability_bin')['over_under_correct'].mean().reset_index()

## plot

import matplotlib.pyplot as plt
import numpy as np

def style_plot(ax, title):
    ax.set_facecolor('black')
    ax.set_title(title, color='white')
    ax.set_xlabel('MARCI Predicted Probability', color='white')
    ax.set_ylabel('Actual Probability', color='white')
    ax.tick_params(axis='x', colors='white')
    ax.tick_params(axis='y', colors='white')
    ax.spines['bottom'].set_color('white')
    ax.spines['top'].set_color('white')
    ax.spines['left'].set_color('white')
    ax.spines['right'].set_color('white')
    #ax.grid(True, linestyle='--', linewidth=0.5, color='grey')
    ax.set_ylim((0,1.1))

def add_identity_line(ax, max_x):
    x = np.linspace(0.5, max_x, 100)
    ax.plot(x, x, linestyle='--', color='grey')

def add_best_fit_line(ax, x_values, y_values):
    x_values = x_values.astype('float64')
    y_values = y_values.astype('float64')
    mask = ~np.isnan(x_values) & ~np.isnan(y_values)
    x_values = x_values[mask]
    y_values = y_values[mask]
    coef = np.polyfit(x_values, y_values, 1)
    poly1d_fn = np.poly1d(coef)
    ax.plot(x_values, poly1d_fn(x_values), color='green')
    corr = np.corrcoef(x_values, y_values)[0,1]
    max_x = np.max(x_values)
    max_y = poly1d_fn(max_x)
    #ax.text(max_x, max_y, f'Corr: {corr:.2f}', color='green')

# Create the Winner scatter plot
x_values_winner = winner_binned['winner_probability_bin']
y_values_winner = winner_binned['winner_correct']
fig1 = plt.figure(facecolor='black')
ax1 = fig1.add_subplot(1, 1, 1)
ax1.scatter(x_values_winner,
            y_values_winner,
            color=(0/255, 128/255, 0/255), s=100, marker='o')
add_identity_line(ax1, predictions_df['predicted_winner_probability'].max())
add_best_fit_line(ax1, predictions_df['predicted_winner_probability'], predictions_df['winner_correct'])
line, = ax1.plot([], [], linestyle='--', color='grey') 
marci_line, = ax1.plot([], [], color='green')
ax1.legend([line, marci_line], ['Perfect Model', 'MARCI'], loc='upper left', facecolor='black', edgecolor='white', labelcolor='white')
style_plot(ax1, 'Winner Predictions')
plt.savefig('Static/Winner_Predictions_dark.png', facecolor='black')
plt.close(fig1)

# Create the Over/Under scatter plot
x_values_over_under = over_under_binned['over_under_probability_bin']
y_values_over_under = over_under_binned['over_under_correct'] 
fig2 = plt.figure(facecolor='black')
ax2 = fig2.add_subplot(1, 1, 1)
ax2.scatter(x_values_over_under,
            y_values_over_under,
            color=(0/255, 128/255, 0/255), s=100, marker='o')
add_identity_line(ax2, predictions_df['predicted_over_under_probability'].max())
add_best_fit_line(ax2, predictions_df['predicted_over_under_probability'], predictions_df['over_under_correct'])
line, = ax2.plot([], [], linestyle='--', color='grey') 
marci_line, = ax2.plot([], [], color='green')
ax2.legend([line, marci_line], ['Perfect Model', 'MARCI'], loc='upper left', facecolor='black', edgecolor='white', labelcolor='white')
style_plot(ax2, 'Over/Under Predictions')
plt.savefig('Static/Over_Under_Predictions_dark.png', facecolor='black')
plt.close(fig2)


## get record
threshold = 0.6

winners_correct = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold, 'winner_correct'].sum()
winners_accuracy = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold, 'winner_correct'].mean()
winners_incorrect = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold,'winner_incorrect'].sum()
winners_tie = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold,'winner_tie'].sum()
winners_return = predictions_df.loc[predictions_df['predicted_winner_probability']>threshold, 'winner_return'].sum()

over_unders_correct = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_correct'].sum()
over_unders_accuracy = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_correct'].mean()
over_unders_incorrect = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_incorrect'].sum()
over_unders_push = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_push'].sum()
over_unders_return = predictions_df.loc[predictions_df['predicted_over_under_probability']>threshold,'over_under_return'].sum()

max_date = predictions_df['game_date'].max()
latest_game = pd.Timestamp(max_date).strftime("%A, %m/%d")

## get binom prob
from scipy.stats import binom

def compare_to_coinflip(c,n):
    prob_fewer = binom.cdf(c, n, 0.5)
    prob_more = 1 - prob_fewer
    return f"{round(prob_more*100,1)}% chance of equal or better performance by flipping a coin."

record = {"winners_correct":str(winners_correct),
        "winners_incorrect":str(winners_incorrect),
        "winners_tie":("-"+str(winners_tie) if winners_tie>0 else ''),
        "winners_return": str(round(winners_accuracy*100,1))+"% accuracy, " + str(round(winners_return,1))+"x return",
        "over_unders_correct":str(over_unders_correct),
        "over_unders_incorrect":str(over_unders_incorrect),
        "over_unders_push":("-"+str(over_unders_push) if over_unders_push>0 else ''),
        "over_unders_return": str(round(over_unders_accuracy*100,1))+"% accuracy, " + str(round(over_unders_return,1))+"x return",
        "latest_game":latest_game,
        "over_unders_binom":compare_to_coinflip(over_unders_correct, (over_unders_incorrect+over_unders_correct)),
        "winners_binom":compare_to_coinflip(winners_correct, (winners_incorrect+winners_correct))}

import json
with open('Source/Data/record.json', 'w') as f:
    json.dump(record,f)