Spaces:
Running
Running
import xgboost as xgb | |
import numpy as np | |
import pandas as pd | |
import pickle as pkl | |
import os | |
import requests | |
from bs4 import BeautifulSoup | |
import warnings | |
warnings.filterwarnings("ignore") | |
from datetime import datetime | |
# set dirs for other files | |
current_directory = os.path.dirname(os.path.abspath(__file__)) | |
parent_directory = os.path.dirname(current_directory) | |
data_directory = os.path.join(parent_directory, 'Data') | |
model_directory = os.path.join(parent_directory, 'Models') | |
pickle_directory = os.path.join(parent_directory, 'Pickles') | |
file_path = os.path.join(data_directory, 'gbg_this_year.csv') | |
gbg = pd.read_csv(file_path, low_memory=False) | |
file_path = os.path.join(data_directory, 'results.csv') | |
results = pd.read_csv(file_path, low_memory=False) | |
# get team abbreviations | |
file_path = os.path.join(pickle_directory, 'team_name_to_abbreviation.pkl') | |
with open(file_path, 'rb') as f: | |
team_name_to_abbreviation = pkl.load(f) | |
file_path = os.path.join(pickle_directory, 'team_abbreviation_to_name.pkl') | |
with open(file_path, 'rb') as f: | |
team_abbreviation_to_name = pkl.load(f) | |
# get schedule | |
file_path = os.path.join(pickle_directory, 'schedule.pkl') | |
with open(file_path, 'rb') as f: | |
schedule = pkl.load(f) | |
# get current week | |
file_path = os.path.join(pickle_directory, 'the_week.pkl') | |
with open(file_path, 'rb') as f: | |
the_week = pkl.load(f) | |
# load models | |
# moneyline | |
model = 'xgboost_ML_no_odds_71.4%' | |
file_path = os.path.join(model_directory, f'{model}.json') | |
xgb_ml = xgb.Booster() | |
xgb_ml.load_model(file_path) | |
# over/under | |
model = 'xgboost_OU_no_odds_59.8%' | |
file_path = os.path.join(model_directory, f'{model}.json') | |
xgb_ou = xgb.Booster() | |
xgb_ou.load_model(file_path) | |
def get_week(): | |
week = the_week['week'] | |
year = the_week['year'] | |
return int(week), int(year) | |
def get_games(week): | |
df = schedule[week-1] | |
df['Away Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Away TeamAway Team']] | |
df['Home Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Home TeamHome Team']] | |
df['Date'] = pd.to_datetime(df['Game TimeGame Time']) | |
df['Date'] = df['Date'].dt.strftime('%A %d/%m %I:%M %p') | |
df['Date'] = df['Date'].apply(lambda x: f"{x.split()[0]} {int(x.split()[1].split('/')[1])}/{int(x.split()[1].split('/')[0])} {x.split()[2]}".capitalize()) | |
return df[['Away Team','Home Team','Date']] | |
def get_one_week(home,away,season,week): | |
try: | |
max_GP_home = gbg.loc[((gbg['home_team'] == home) | (gbg['away_team'] == home)) & (gbg['GP'] < week)]['GP'].max() | |
max_GP_away = gbg.loc[((gbg['home_team'] == away) | (gbg['away_team'] == away)) & (gbg['GP'] < week)]['GP'].max() | |
home_df = gbg.loc[((gbg['away_team']==home) | (gbg['home_team']==home)) & (gbg['Season']==season) & (gbg['GP']==max_GP_home)] | |
gbg_home_team = home_df['home_team'].item() | |
home_df.drop(columns=['game_id','home_team','away_team','Season','game_date'], inplace=True) | |
home_df = home_df[[i for i in home_df.columns if '.Away' not in i] if gbg_home_team==home else [i for i in home_df.columns if '.Away' in i]] | |
home_df.columns = [i.replace('.Away','') for i in home_df.columns] | |
away_df = gbg.loc[((gbg['away_team']==away) | (gbg['home_team']==away)) & (gbg['Season']==season) & (gbg['GP']==max_GP_away)] | |
gbg_home_team = away_df['home_team'].item() | |
away_df.drop(columns=['game_id','home_team','away_team','Season','game_date'], inplace=True) | |
away_df = away_df[[i for i in away_df.columns if '.Away' not in i] if gbg_home_team==away else [i for i in away_df.columns if '.Away' in i]] | |
away_df.columns = [i.replace('.Away','') + '.Away' for i in away_df.columns] | |
df = home_df.reset_index(drop=True).merge(away_df.reset_index(drop=True), left_index=True, right_index=True) | |
return df | |
except ValueError: | |
return pd.DataFrame() | |
def predict(home,away,season,week,total): | |
global results | |
# finish preparing data | |
if len(home)>4: | |
home_abbrev = team_name_to_abbreviation[home] | |
else: | |
home_abbrev = home | |
if len(away)>4: | |
away_abbrev = team_name_to_abbreviation[away] | |
else: | |
away_abbrev = away | |
data = get_one_week(home_abbrev,away_abbrev,season,week) | |
data['Total Score Close'] = total | |
matrix = xgb.DMatrix(data.astype(float).values) | |
# create game id | |
if week < 10: | |
game_id = str(season) + '_0' + str(int(week)) + '_' + away_abbrev + '_' + home_abbrev | |
else: | |
game_id = str(season) + '_' + str(int(week)) + '_' + away_abbrev + '_' + home_abbrev | |
try: | |
moneyline_result = results.loc[results['game_id']==game_id, 'winner'].item() | |
except: | |
moneyline_result = 'N/A' | |
try: | |
ml_predicted_proba = xgb_ml.predict(matrix)[0][1] | |
winner_proba = max([ml_predicted_proba, 1-ml_predicted_proba]).item() | |
moneyline = {'Winner': [home if ml_predicted_proba>0.5 else away if ml_predicted_proba<0.5 else 'Toss-Up'], | |
'Probabilities':[winner_proba], | |
'Result': moneyline_result} | |
except: | |
moneyline = {'Winner': 'NA', | |
'Probabilities':['N/A'], | |
'Result': moneyline_result} | |
try: | |
result = results.loc[results['game_id']==game_id, 'total'].item() | |
over_under_result = 'Over' if float(result)>float(total) else 'Push' if float(result)==float(total) else 'Under' | |
except: | |
over_under_result = 'N/A' | |
try: | |
ou_predicted_proba = xgb_ou.predict(matrix)[0][1] | |
ou_proba = max([ou_predicted_proba, 1-ou_predicted_proba]).item() | |
over_under = {'Over/Under': ['Over' if ou_predicted_proba>0.5 else 'Under'], | |
'Probability': [ou_proba], | |
'Result': over_under_result} | |
except: | |
over_under = {'Over/Under': 'N/A', | |
'Probability': ['N/A'], | |
'Result': over_under_result} | |
return game_id, moneyline, over_under | |