import xgboost as xgb import numpy as np import pandas as pd import pickle as pkl import os import requests from bs4 import BeautifulSoup import warnings warnings.filterwarnings("ignore") from datetime import datetime # set dirs for other files current_directory = os.path.dirname(os.path.abspath(__file__)) parent_directory = os.path.dirname(current_directory) data_directory = os.path.join(parent_directory, 'Data') model_directory = os.path.join(parent_directory, 'Models') pickle_directory = os.path.join(parent_directory, 'Pickles') file_path = os.path.join(data_directory, 'gbg_this_year.csv') gbg = pd.read_csv(file_path, low_memory=False) file_path = os.path.join(data_directory, 'results.csv') results = pd.read_csv(file_path, low_memory=False) # get team abbreviations file_path = os.path.join(pickle_directory, 'team_name_to_abbreviation.pkl') with open(file_path, 'rb') as f: team_name_to_abbreviation = pkl.load(f) file_path = os.path.join(pickle_directory, 'team_abbreviation_to_name.pkl') with open(file_path, 'rb') as f: team_abbreviation_to_name = pkl.load(f) # get schedule file_path = os.path.join(pickle_directory, 'schedule.pkl') with open(file_path, 'rb') as f: schedule = pkl.load(f) # get current week file_path = os.path.join(pickle_directory, 'the_week.pkl') with open(file_path, 'rb') as f: the_week = pkl.load(f) # load models # moneyline model = 'xgboost_ML_no_odds_71.4%' file_path = os.path.join(model_directory, f'{model}.json') xgb_ml = xgb.Booster() xgb_ml.load_model(file_path) # over/under model = 'xgboost_OU_no_odds_59.8%' file_path = os.path.join(model_directory, f'{model}.json') xgb_ou = xgb.Booster() xgb_ou.load_model(file_path) def get_week(): week = the_week['week'] year = the_week['year'] return int(week), int(year) def get_games(week): df = schedule[week-1] df['Away Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Away TeamAway Team']] df['Home Team'] = [' '.join(i.split('\xa0')[1:]) for i in df['Home TeamHome Team']] df['Date'] = pd.to_datetime(df['Game TimeGame Time']) df['Date'] = df['Date'].dt.strftime('%A %d/%m %I:%M %p') df['Date'] = df['Date'].apply(lambda x: f"{x.split()[0]} {int(x.split()[1].split('/')[1])}/{int(x.split()[1].split('/')[0])} {x.split()[2]}".capitalize()) return df[['Away Team','Home Team','Date']] def get_one_week(home,away,season,week): try: max_GP_home = gbg.loc[((gbg['home_team'] == home) | (gbg['away_team'] == home)) & (gbg['GP'] < week)]['GP'].max() max_GP_away = gbg.loc[((gbg['home_team'] == away) | (gbg['away_team'] == away)) & (gbg['GP'] < week)]['GP'].max() home_df = gbg.loc[((gbg['away_team']==home) | (gbg['home_team']==home)) & (gbg['Season']==season) & (gbg['GP']==max_GP_home)] gbg_home_team = home_df['home_team'].item() home_df.drop(columns=['game_id','home_team','away_team','Season','game_date'], inplace=True) home_df = home_df[[i for i in home_df.columns if '.Away' not in i] if gbg_home_team==home else [i for i in home_df.columns if '.Away' in i]] home_df.columns = [i.replace('.Away','') for i in home_df.columns] away_df = gbg.loc[((gbg['away_team']==away) | (gbg['home_team']==away)) & (gbg['Season']==season) & (gbg['GP']==max_GP_away)] gbg_home_team = away_df['home_team'].item() away_df.drop(columns=['game_id','home_team','away_team','Season','game_date'], inplace=True) away_df = away_df[[i for i in away_df.columns if '.Away' not in i] if gbg_home_team==away else [i for i in away_df.columns if '.Away' in i]] away_df.columns = [i.replace('.Away','') + '.Away' for i in away_df.columns] df = home_df.reset_index(drop=True).merge(away_df.reset_index(drop=True), left_index=True, right_index=True) return df except ValueError: return pd.DataFrame() def predict(home,away,season,week,total): global results # finish preparing data if len(home)>4: home_abbrev = team_name_to_abbreviation[home] else: home_abbrev = home if len(away)>4: away_abbrev = team_name_to_abbreviation[away] else: away_abbrev = away data = get_one_week(home_abbrev,away_abbrev,season,week) data['Total Score Close'] = total matrix = xgb.DMatrix(data.astype(float).values) # create game id if week < 10: game_id = str(season) + '_0' + str(int(week)) + '_' + away_abbrev + '_' + home_abbrev else: game_id = str(season) + '_' + str(int(week)) + '_' + away_abbrev + '_' + home_abbrev try: moneyline_result = results.loc[results['game_id']==game_id, 'winner'].item() except: moneyline_result = 'N/A' try: ml_predicted_proba = xgb_ml.predict(matrix)[0][1] winner_proba = max([ml_predicted_proba, 1-ml_predicted_proba]).item() moneyline = {'Winner': [home if ml_predicted_proba>0.5 else away if ml_predicted_proba<0.5 else 'Toss-Up'], 'Probabilities':[winner_proba], 'Result': moneyline_result} except: moneyline = {'Winner': 'NA', 'Probabilities':['N/A'], 'Result': moneyline_result} try: result = results.loc[results['game_id']==game_id, 'total'].item() over_under_result = 'Over' if float(result)>float(total) else 'Push' if float(result)==float(total) else 'Under' except: over_under_result = 'N/A' try: ou_predicted_proba = xgb_ou.predict(matrix)[0][1] ou_proba = max([ou_predicted_proba, 1-ou_predicted_proba]).item() over_under = {'Over/Under': ['Over' if ou_predicted_proba>0.5 else 'Under'], 'Probability': [ou_proba], 'Result': over_under_result} except: over_under = {'Over/Under': 'N/A', 'Probability': ['N/A'], 'Result': over_under_result} return game_id, moneyline, over_under