BugHunter1 commited on
Commit
c4d3b2a
1 Parent(s): bb0e255

revert for testing

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -5,7 +5,6 @@ from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
- dataset = load_dataset("facebook/voxpopuli", "es", split="validation", streaming=True)
9
 
10
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
 
@@ -13,9 +12,9 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
13
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
14
 
15
  # load text-to-speech checkpoint and speaker embeddings
16
- processor = SpeechT5Processor.from_pretrained("arpan-das-astrophysics/speecht5_finetuned_voxpopuli_it")
17
 
18
- model = SpeechT5ForTextToSpeech.from_pretrained("arpan-das-astrophysics/speecht5_finetuned_voxpopuli_it").to(device)
19
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
20
 
21
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -23,7 +22,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
23
 
24
 
25
  def translate(audio):
26
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"})
27
  return outputs["text"]
28
 
29
 
@@ -42,7 +41,7 @@ def speech_to_speech_translation(audio):
42
 
43
  title = "Cascaded STST"
44
  description = """
45
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
46
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
47
 
48
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
@@ -70,4 +69,4 @@ file_translate = gr.Interface(
70
  with demo:
71
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
72
 
73
- demo.launch()
 
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
 
41
 
42
  title = "Cascaded STST"
43
  description = """
44
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
 
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
+ demo.launch()