Spaces:
Runtime error
Runtime error
BugHunter1
commited on
Commit
•
c4d3b2a
1
Parent(s):
bb0e255
revert for testing
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ from datasets import load_dataset
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
-
dataset = load_dataset("facebook/voxpopuli", "es", split="validation", streaming=True)
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
|
@@ -13,9 +12,9 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
13 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
14 |
|
15 |
# load text-to-speech checkpoint and speaker embeddings
|
16 |
-
processor = SpeechT5Processor.from_pretrained("
|
17 |
|
18 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("
|
19 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
|
21 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
@@ -23,7 +22,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
23 |
|
24 |
|
25 |
def translate(audio):
|
26 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
27 |
return outputs["text"]
|
28 |
|
29 |
|
@@ -42,7 +41,7 @@ def speech_to_speech_translation(audio):
|
|
42 |
|
43 |
title = "Cascaded STST"
|
44 |
description = """
|
45 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
46 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
47 |
|
48 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
@@ -70,4 +69,4 @@ file_translate = gr.Interface(
|
|
70 |
with demo:
|
71 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
72 |
|
73 |
-
demo.launch()
|
|
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
|
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
|
17 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
|
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
45 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
|
47 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
|
|
69 |
with demo:
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
+
demo.launch()
|