Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
import mediapy
|
6 |
+
from PIL import Image
|
7 |
+
import gradio as gr
|
8 |
+
from huggingface_hub import snapshot_download
|
9 |
+
|
10 |
+
# Clone the repository and add the path
|
11 |
+
os.system("git clone https://github.com/google-research/frame-interpolation")
|
12 |
+
sys.path.append("frame-interpolation")
|
13 |
+
|
14 |
+
# Import after appending the path
|
15 |
+
from eval import interpolator, util
|
16 |
+
|
17 |
+
def load_model(model_name):
|
18 |
+
model = interpolator.Interpolator(snapshot_download(repo_id=model_name), None)
|
19 |
+
return model
|
20 |
+
|
21 |
+
model_names = [
|
22 |
+
"akhaliq/frame-interpolation-film-style",
|
23 |
+
"NimaBoscarino/frame-interpolation_film_l1",
|
24 |
+
"NimaBoscarino/frame_interpolation_film_vgg",
|
25 |
+
]
|
26 |
+
|
27 |
+
models = {model_name: load_model(model_name) for model_name in model_names}
|
28 |
+
|
29 |
+
ffmpeg_path = util.get_ffmpeg_path()
|
30 |
+
mediapy.set_ffmpeg(ffmpeg_path)
|
31 |
+
|
32 |
+
def resize(width, img):
|
33 |
+
img = Image.fromarray(img)
|
34 |
+
wpercent = (width / float(img.size[0]))
|
35 |
+
hsize = int((float(img.size[1]) * float(wpercent)))
|
36 |
+
img = img.resize((width, hsize), Image.LANCZOS)
|
37 |
+
return img
|
38 |
+
|
39 |
+
def resize_and_crop(img_path, size, crop_origin="middle"):
|
40 |
+
img = Image.open(img_path)
|
41 |
+
img = img.resize(size, Image.LANCZOS)
|
42 |
+
return img
|
43 |
+
|
44 |
+
def resize_img(img1, img2_path):
|
45 |
+
img_target_size = Image.open(img1)
|
46 |
+
img_to_resize = resize_and_crop(
|
47 |
+
img2_path,
|
48 |
+
(img_target_size.size[0], img_target_size.size[1]), # set width and height to match img1
|
49 |
+
crop_origin="middle"
|
50 |
+
)
|
51 |
+
img_to_resize.save('resized_img2.png')
|
52 |
+
|
53 |
+
def predict(frame1, frame2, times_to_interpolate, model_name):
|
54 |
+
model = models[model_name]
|
55 |
+
|
56 |
+
frame1 = resize(1080, frame1)
|
57 |
+
frame2 = resize(1080, frame2)
|
58 |
+
|
59 |
+
frame1.save("test1.png")
|
60 |
+
frame2.save("test2.png")
|
61 |
+
|
62 |
+
resize_img("test1.png", "test2.png")
|
63 |
+
input_frames = ["test1.png", "resized_img2.png"]
|
64 |
+
|
65 |
+
frames = list(
|
66 |
+
util.interpolate_recursively_from_files(
|
67 |
+
input_frames, times_to_interpolate, model))
|
68 |
+
|
69 |
+
mediapy.write_video("out.mp4", frames, fps=30)
|
70 |
+
return "out.mp4"
|
71 |
+
|
72 |
+
title = "Sports model"
|
73 |
+
description = "Wechat:Liesle1"
|
74 |
+
article = ""
|
75 |
+
examples = [
|
76 |
+
['cat3.jpeg', 'cat4.jpeg', 2, model_names[0]],
|
77 |
+
['cat1.jpeg', 'cat2.jpeg', 2, model_names[1]],
|
78 |
+
]
|
79 |
+
|
80 |
+
gr.Interface(
|
81 |
+
fn=predict,
|
82 |
+
inputs=[
|
83 |
+
gr.Image(label="First Frame"),
|
84 |
+
gr.Image(label="Second Frame"),
|
85 |
+
gr.Number(label="Times to Interpolate", value=2),
|
86 |
+
gr.Dropdown(label="Model", choices=model_names),
|
87 |
+
],
|
88 |
+
outputs=gr.Video(label="Interpolated Frames"),
|
89 |
+
title=title,
|
90 |
+
description=description,
|
91 |
+
article=article,
|
92 |
+
examples=examples,
|
93 |
+
).launch()
|