CHEN11102 commited on
Commit
16af094
1 Parent(s): d29695b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -0
app.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import numpy as np
4
+ import tensorflow as tf
5
+ import mediapy
6
+ from PIL import Image
7
+ import gradio as gr
8
+ from huggingface_hub import snapshot_download
9
+
10
+ # Clone the repository and add the path
11
+ os.system("git clone https://github.com/google-research/frame-interpolation")
12
+ sys.path.append("frame-interpolation")
13
+
14
+ # Import after appending the path
15
+ from eval import interpolator, util
16
+
17
+ def load_model(model_name):
18
+ model = interpolator.Interpolator(snapshot_download(repo_id=model_name), None)
19
+ return model
20
+
21
+ model_names = [
22
+ "akhaliq/frame-interpolation-film-style",
23
+ "NimaBoscarino/frame-interpolation_film_l1",
24
+ "NimaBoscarino/frame_interpolation_film_vgg",
25
+ ]
26
+
27
+ models = {model_name: load_model(model_name) for model_name in model_names}
28
+
29
+ ffmpeg_path = util.get_ffmpeg_path()
30
+ mediapy.set_ffmpeg(ffmpeg_path)
31
+
32
+ def resize(width, img):
33
+ img = Image.fromarray(img)
34
+ wpercent = (width / float(img.size[0]))
35
+ hsize = int((float(img.size[1]) * float(wpercent)))
36
+ img = img.resize((width, hsize), Image.LANCZOS)
37
+ return img
38
+
39
+ def resize_and_crop(img_path, size, crop_origin="middle"):
40
+ img = Image.open(img_path)
41
+ img = img.resize(size, Image.LANCZOS)
42
+ return img
43
+
44
+ def resize_img(img1, img2_path):
45
+ img_target_size = Image.open(img1)
46
+ img_to_resize = resize_and_crop(
47
+ img2_path,
48
+ (img_target_size.size[0], img_target_size.size[1]), # set width and height to match img1
49
+ crop_origin="middle"
50
+ )
51
+ img_to_resize.save('resized_img2.png')
52
+
53
+ def predict(frame1, frame2, times_to_interpolate, model_name):
54
+ model = models[model_name]
55
+
56
+ frame1 = resize(1080, frame1)
57
+ frame2 = resize(1080, frame2)
58
+
59
+ frame1.save("test1.png")
60
+ frame2.save("test2.png")
61
+
62
+ resize_img("test1.png", "test2.png")
63
+ input_frames = ["test1.png", "resized_img2.png"]
64
+
65
+ frames = list(
66
+ util.interpolate_recursively_from_files(
67
+ input_frames, times_to_interpolate, model))
68
+
69
+ mediapy.write_video("out.mp4", frames, fps=30)
70
+ return "out.mp4"
71
+
72
+ title = "Sports model"
73
+ description = "Wechat:Liesle1"
74
+ article = ""
75
+ examples = [
76
+ ['cat3.jpeg', 'cat4.jpeg', 2, model_names[0]],
77
+ ['cat1.jpeg', 'cat2.jpeg', 2, model_names[1]],
78
+ ]
79
+
80
+ gr.Interface(
81
+ fn=predict,
82
+ inputs=[
83
+ gr.Image(label="First Frame"),
84
+ gr.Image(label="Second Frame"),
85
+ gr.Number(label="Times to Interpolate", value=2),
86
+ gr.Dropdown(label="Model", choices=model_names),
87
+ ],
88
+ outputs=gr.Video(label="Interpolated Frames"),
89
+ title=title,
90
+ description=description,
91
+ article=article,
92
+ examples=examples,
93
+ ).launch()