BrAD / app.py
elischwartz's picture
Added more explanations
e9278d2
raw
history blame
4.89 kB
import pickle
import os
from sklearn.neighbors import NearestNeighbors
import numpy as np
import gradio as gr
from PIL import Image
data_root = 'https://ai-vision-public-datasets.s3.eu.cloud-object-storage.appdomain.cloud/DomainNet'
feat_dir = 'brad_feats'
domains = ['sketch', 'painting', 'clipart', 'real']
shots = '-1'
num_nn = 20
search_domain = 'all'
num_results_per_domain = 5
src_data_dict = {}
class_list = []
if search_domain == 'all':
for d in domains:
with open(os.path.join(feat_dir, f'dst_{d}_{shots}.pkl'), 'rb') as fp:
src_data = pickle.load(fp)
if class_list == []:
for p in src_data[0]:
cl = p.split('/')[-2]
if cl not in class_list:
class_list.append(cl)
src_nn_fit = NearestNeighbors(n_neighbors=num_results_per_domain, algorithm='auto', n_jobs=-1).fit(src_data[1])
src_data_dict[d] = (src_data,src_nn_fit)
else:
with open(os.path.join(feat_dir, f'dst_{search_domain}_{shots}.pkl'), 'rb') as fp:
src_data = pickle.load(fp)
src_nn_fit = NearestNeighbors(n_neighbors=num_results_per_domain, algorithm='auto', n_jobs=-1).fit(src_data[1])
src_data_dict[search_domain] = (src_data,src_nn_fit)
dst_data_dict = {}
min_len = 1e10
for d in domains:
with open(os.path.join(feat_dir, f'src_{d}_{shots}.pkl'), 'rb') as fp:
dest_data = pickle.load(fp)
dst_data_dict[d] = ({cl: ([],[]) for cl in class_list},dest_data[1])
for c, p in enumerate(dest_data[0]):
cl = p.split('/')[-2]
dst_data_dict[d][0][cl][0].append(p)
dst_data_dict[d][0][cl][1].append(c)
for cl in class_list:
min_len = min(min_len, len(dst_data_dict[d][0][cl]))
def query(query_index, query_domain, cl):
dst_data = dst_data_dict[query_domain]
dst_img_path = os.path.join(data_root, dst_data[0][cl][0][query_index])
query_index = dst_data[0][cl][1][query_index]
img_paths = [dst_img_path]
q_cl = dst_img_path.split('/')[-2]
captions = [f'Query: {q_cl}'.title()]
for s_domain, s_data in src_data_dict.items():
_, top_n_matches_ids = s_data[1].kneighbors(dst_data[1][query_index:query_index+1])
top_n_labels = s_data[0][2][top_n_matches_ids][0]
src_img_pths = [os.path.join(data_root, s_data[0][0][ix]) for ix in top_n_matches_ids[0]]
img_paths += src_img_pths
for p in src_img_pths:
src_cl = p.split('/')[-2]
src_file = p.split('/')[-1]
captions.append(src_cl.title())
# print(img_paths)
return tuple([p for p in img_paths])+ tuple(captions)
demo = gr.Blocks()
with demo:
gr.Markdown('# Unsupervised Domain Generalization by Learning a Bridge Across Domains')
gr.Markdown('This demo showcases the cross-domain retrieval capabilities of our self-supervised cross domain training as presented @CVPR 2022. For details please refer to [the paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Harary_Unsupervised_Domain_Generalization_by_Learning_a_Bridge_Across_Domains_CVPR_2022_paper.pdf)')
gr.Markdown('The model is trained in an unsupervised manner on all domains without class labels. The labels are displayed to indicate retrieval success/failure.')
gr.Markdown('## Instructions:')
gr.Markdown('Select a query domain and a class from the drop-down menus and the select any random image from the domain using the slider below and press the "Run" button. The retrieved results from each of the four domains, along with the class label will be presented.')
gr.Markdown('## Select Query Domain: ')
gr.Markdown('# Query Image: \t\t\t\t')
# domain_drop = gr.Dropdown(domains)
# cl_drop = gr.Dropdown(class_list)
# domain_select_button = gr.Button("Select Domain")
# slider = gr.Slider(0, min_len)
# slider = gr.Slider(0, 10000)
with gr.Row():
with gr.Column():
domain_drop = gr.Dropdown(domains, label='Domain')
cl_drop = gr.Dropdown(class_list, label='Query Class')
slider = gr.Slider(0, 100, label='Query image selector slider')
# gr.Markdown('\t')
# gr.Markdown('\t')
# gr.Markdown('\t')
with gr.Column():
src_cap = gr.Label()
src_img = gr.Image()
image_button = gr.Button("Run")
out_images = []
out_captions = []
for d in domains:
gr.Markdown(f'# Retrieved Images from {d.title()} Domain:')
with gr.Row():
for _ in range(num_results_per_domain):
with gr.Column():
out_captions.append(gr.Label())
out_images.append(gr.Image())
image_button.click(query, inputs=[slider, domain_drop, cl_drop], outputs=[src_img]+out_images +[src_cap]+ out_captions)
demo.launch(share=True)