import streamlit as st import plotly.express as px import pandas as pd st.set_page_config( page_title = 'Streamlit Sample Dashboard Template', page_icon = '✅', layout = 'wide' ) pie_new_color_discrete_sequence = [ 'royalblue', 'tomato', 'gold'] bar_new_color_discrete_sequence = [ ' royalblue', 'royalblue', 'tomato', 'gold'] def rating_to_sentiment(rating: float): if rating >= 4: sentiment = 'positive' elif rating == 3: sentiment = 'neutral' elif rating <= 2: sentiment = 'negative' return sentiment s = {'a': "rgb(235, 69, 95)", 'b': "rgb(255, 184, 76)", 'c':'rgb(43, 52, 103)'} color_map = {'positive' : "royalblue", 'neutral': 'gold', 'negative': 'tomato'} df = pd.read_csv('20230220_selected_df.csv', index_col=0) st.write(""" # Distribution of topics discussed from *Trustadvisor.com* on **Carrefour** """) clean_superclass = ['clean_BE', 'clean_PD', 'clean_DM', 'clean_AS'] group_df = df.loc[: , ['ratings'] + clean_superclass ] group_df['sentiment'] = group_df['ratings'].apply(lambda x: rating_to_sentiment(x)) group_df['topic_count'] = group_df.iloc[ :, 1:5].sum(axis= 1) heamap_data = group_df.groupby('sentiment').sum().reset_index().iloc[: , 2:6].to_numpy() pie_fig = px.pie(data_frame= group_df, names = group_df.sentiment, color= 'sentiment', color_discrete_map = color_map, category_orders = {"sentiment": ['positive' ,'neutral' 'negative']}, hole= 0.5) pie_fig.update_layout(legend=dict( orientation="h", yanchor="middle", y= 1.15, xanchor="center", x= 0.5 )) bar_fig = px.histogram(data_frame=group_df, x = 'topic_count', color= 'sentiment', color_discrete_map = color_map, text_auto =True, category_orders = {"sentiment": ['positive' ,'negative' 'neutral']}) # color_discrete_sequence = bar_new_color_discrete_sequence, heatmap_fig = px.imshow(heamap_data, labels=dict(x="4 Super Classes", y="Sentiment"), x=['Buying Experience', 'Product', 'Delivery', 'After Sales'], y=['Negative', 'Neutral', 'Positive'], color_continuous_scale=['royalblue', 'gold', 'tomato'], text_auto=True) class_1_fig = px.pie(data_frame= group_df[group_df['clean_BE'] == 1], names = group_df[group_df['clean_BE'] == 1].sentiment, color = 'sentiment', color_discrete_map = color_map, category_orders = {"sentiment": ['positive' ,'negative' 'neutral']}, hole= 0.5) class_2_fig = px.pie(data_frame= group_df[group_df['clean_PD'] == 1], names = group_df[group_df['clean_PD'] == 1].sentiment, color = 'sentiment', color_discrete_map = color_map, category_orders = {"sentiment": ['positive' ,'negative' 'neutral']}, hole= 0.5) class_3_fig = px.pie(data_frame= group_df[group_df['clean_DM'] == 1], names = group_df[group_df['clean_DM'] == 1].sentiment, color = 'sentiment', color_discrete_map = color_map, category_orders = {"sentiment": ['positive' ,'negative' 'neutral']}, hole= 0.5) class_4_fig = px.pie(data_frame= group_df[group_df['clean_AS'] == 1], names = group_df[group_df['clean_AS'] == 1].sentiment, color = 'sentiment', color_discrete_map = color_map, category_orders = {"sentiment": ['positive' ,'negative' 'neutral']}, hole= 0.5) kpi1, kpi2, kpi3 = st.columns(3) with kpi1: st.markdown("**All reviewsf**") st.plotly_chart(pie_fig, use_container_width=True) with kpi2: with st.expander("Sentiment Count"): st.dataframe(data=group_df['sentiment'].value_counts().rename_axis('unique_values').reset_index(name='counts'), use_container_width=True) st.plotly_chart(heatmap_fig, use_container_width=True) with kpi3: st.markdown("Looking at the how many topics each review is talking about") st.plotly_chart(bar_fig, use_container_width=True) st.markdown("
",unsafe_allow_html=True) st.markdown("## Distribution broken down into 4 super classes") class1, class2, class3, class4 = st.columns(4) with class1: st.markdown("#### Buying Experience") st.plotly_chart(class_1_fig, use_container_width=True) with class2: st.markdown("#### Product") st.plotly_chart(class_2_fig, use_container_width=True) with class3: st.markdown("#### Delivery Mode") st.plotly_chart(class_3_fig, use_container_width=True) with class4: st.markdown("#### After Sales") st.plotly_chart(class_4_fig, use_container_width=True)