import streamlit as st from streamlit_chat import message as st_message import pandas as pd import numpy as np import datetime import gspread import torch from langchain.text_splitter import RecursiveCharacterTextSplitter # from langchain.vectorstores import Chroma from langchain.vectorstores import FAISS from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain import HuggingFacePipeline from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferWindowMemory from langchain.chains import LLMChain from langchain.chains import ConversationalRetrievalChain from langchain.chains.question_answering import load_qa_chain from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT st.set_page_config( page_title="Hello", page_icon="👋", ) # st.markdown("main page") col1, col2, col3 = st.columns([0.2, 0.5, 0.2]) col2.image("https://cdn-icons-png.flaticon.com/512/2040/2040946.png", use_column_width=True ) row2_col1, row2_col2, row2_col3 = st.columns([0.2, 0.5, 0.2]) row2_col2.markdown("
Please start customizing dataset and downloading the model on the next pages
", unsafe_allow_html=True)