Spaces:
Running
Running
import modal | |
import gradio as gr | |
import numpy as np | |
from io import BytesIO | |
import requests | |
f = modal.Cls.lookup("casa-interior-hf-v3", "DesignModel") | |
import requests | |
from io import BytesIO | |
from google.cloud import vision | |
from google.oauth2 import service_account | |
import PIL | |
credentials = { | |
"type": "service_account", | |
"project_id": "furniture-423815", | |
"private_key_id": "be5e481a8e4499c164ed0147b3f024d4ef1f42f3", | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCdy13qrKLk+Lai\nspQgcgKU8YYBOfPdo+FGlodKVb7kTJiEsTN7Ovq69c4S9Hzsf/UNdiEB4wpDIG5m\nBaZrHPBeaZSxmSVhNjctaYR/id06Qvka/Y4PerntUA9ubcVYvZ/ntEpHaL1kVYNe\nATAD0LE0QuQuXPWfBDGvyfsy2hK91D+/WbPCby+pWhh4buRZk3xGku+SGtoTenMP\nzHagPCVNreJD13mrIJu5M1NkB0ZHAdlkOVdRqyxntgcg97krUpace8DM28xB0Pfb\nXk1vaESeUbrcjVt4RDxQAIZwYB4MQ68MiEsuOGZ3O/coXafK89ldMOu+zKlvgloB\ns/JlPtH5AgMBAAECggEABTXpmWXfQKyiWkvHlq0xHuI9XLXBUuq2Fg7DM64SbkdF\nu47+7lUvoaQbjJZweB5PFSVXGHD6/iW4Y4vQ96VGXjXCFF3EZVoFFy2uc4g1yxZa\nU7z295WjxV2BDvJWw5QKb1wtnj9MDr/ApWZoY53c9ib10j6dWUWKDv4eWornNse5\n0ZZYCJV3RtPgEeuf2dyWtFKeAGwiUKYf60l4sBloJbpI1Jedw/0WdlH8WyX5ufuN\nBb9ZWWOmjImr4KGnttLOGg0Id/NZNMJc1i3iz91qWKecregoBuMoNp0AnfclOc1h\nipHXg6zqRZXBDOGPTwBibm8YsR0wWuFx0qCuZNGaYQKBgQDVQW54oneinUL8vVIi\nSdoR8zDrEzje5mgjk68NXn/mUZXhc9toYWblDr5x+PR/LIkjGtUAo706ncV4ysON\nEPB2yrIY1SgTOHP9eW4uTqhQanNr/NgH1/viNXPeQIEx2BnQvcLuORU/V8ZPK+X5\nhRF/xoN9B0Phwxy10SSQZ/iVIQKBgQC9bByD3lvov5ibQn1x57B59zHkq5TPvnXU\ntSFNkWTqus3mmHttJQNP6PcwRiRBaHt2NfKxO9nfIq1rkTaSOMCtsu1N48MF7ccx\niBNnRYMNdu4xmB3JcLyfJ5SZhcO46lJQOrRg0JfemD+BrEgazJi8S7ECwAGemlY1\nrllZnsJJ2QKBgEMxzMdCGgQpHTRZywl2z7mcMSvA8Mh7PREItb22qwI9bsaNJPMs\nzakbDjMHSLLRq5xeFgOPlE5l7BT1fsxyK/KiR5+/elMkFJgnrOn2at57zEaYctF1\n4q4SPaIoHQ1BlFDLmiJJ5kIBPEEyCdKndS4XtNKueVsniWJYtfaybAdBAoGBALU4\n9Z8D4ZKvm2UPG80aCLDnWoiXz2thoIG8OPxpGc+ooMz5HTyyqJSPIc7BjHY3a8cQ\nnfwKcssT9i5vY3JJca28/WQDf9XwQx6UPVwUGOmM2x3/lp/eh9cMmxK18ya6p72y\nLFhjuKhxqHB7TxC0pXugPt2OrP38UnZRM5KWXPMhAoGALFZCVXiDaY/4ay9ATlLs\ndDhS+yX7zJ5vKusT42wAPrFlcu+3eKxGRzFL3c/yNQaFFcpV+TeVsHx2gQ/NRWaL\nu1+99cZ56tTMfajXmRkri+R9wz70awmDx9ReCrl1IMEvPFwtaMMWf6m1xbimfgDv\n3tIueX+ZTxWFRYcI6UGbW7k=\n-----END PRIVATE KEY-----\n", | |
"client_email": "furniture-service@furniture-423815.iam.gserviceaccount.com", | |
"client_id": "101044092237072973103", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/furniture-service%40furniture-423815.iam.gserviceaccount.com", | |
"universe_domain": "googleapis.com" | |
} | |
class GetProduct: | |
def __init__(self): | |
creds = service_account.Credentials.from_service_account_info(credentials) | |
self.client = vision.ImageAnnotatorClient(credentials=creds) | |
def inference(self, cropped_image) -> list: | |
annotations = self.annotate_image(cropped_image) | |
selected_images = self.report(annotations) | |
return selected_images | |
def annotate_image(self, image): | |
buffer = BytesIO() | |
# Convert the image to RGB mode if it is RGBA | |
if image.mode == 'RGBA': | |
image = image.convert('RGB') | |
image.save(buffer, format="JPEG") | |
content = buffer.getvalue() | |
image = vision.Image(content=content) | |
web_detection = self.client.web_detection(image=image).web_detection | |
return web_detection | |
def report(self, annotations) -> list: | |
selected_images = [] | |
if annotations.visually_similar_images: | |
for page in annotations.visually_similar_images: | |
try: | |
response = requests.get(page.url) | |
img = Image.open(BytesIO(response.content)) | |
selected_images.append(img) | |
except: | |
pass | |
return selected_images | |
GP = GetProduct() | |
def casa_ai_run_tab1(image=None, text=None): | |
if image is None: | |
print('Please provide image of empty room to design') | |
return None | |
if text is None: | |
print('Please provide a text prompt') | |
return None | |
result_image = f.inference.remote("tab1", image, text) | |
return result_image | |
def casa_ai_run_tab2(dict=None, text=None): | |
image = dict["background"].convert("RGB") | |
mask = dict["layers"][0].convert('L') | |
if np.sum(np.array(mask)) == 0: | |
mask = None | |
if mask is None: | |
print('Please provide a mask over the object you want to generate again.') | |
if image is None and text is None: | |
print('Please provide context in form of image, text') | |
return None | |
result_image = f.inference.remote("tab2", image, text, mask) | |
return result_image | |
def casa_ai_run_tab3(dict=None): | |
## dict_keys(['background', 'layers', 'composite']) | |
selected_crop = dict["composite"] | |
if selected_crop is None: | |
print('Please provide cropped object') | |
return None | |
selected_crop = PIL.Image.fromarray(selected_crop) | |
results = GP.inference(selected_crop) | |
return results | |
with gr.Blocks() as casa: | |
title = "Casa-AI Demo" | |
description = "A Gradio interface to use CasaAI for virtual staging" | |
with gr.Tab("Reimagine"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [ | |
gr.Image(sources='upload', type="pil", label="Upload"), | |
gr.Textbox(label="Room description.") | |
] | |
with gr.Column(): | |
outputs = [gr.Image(label="Generated room image")] | |
submit_btn = gr.Button("Generate!") | |
submit_btn.click(casa_ai_run_tab1, inputs=inputs, outputs=outputs) | |
with gr.Tab("Redesign"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [ | |
gr.ImageEditor(sources='upload', brush=gr.Brush(colors=["#FFFFFF"]), elem_id="image_upload", type="pil", label="Upload", layers=False, eraser=True, transforms=[]), | |
gr.Textbox(label="Description for redesigning masked object")] | |
with gr.Column(): | |
outputs = [gr.Image(label="Image with new designed object")] | |
submit_btn = gr.Button("Redesign!") | |
submit_btn.click(casa_ai_run_tab2, inputs=inputs, outputs=outputs) | |
with gr.Tab("Recommendation"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [ | |
gr.ImageEditor(sources='upload', elem_id="image_upload", type="numpy", label="Upload", layers=False, eraser=False, brush=False, transforms=['crop'], crop_size="1:1"), | |
] | |
with gr.Column(): | |
outputs = [gr.Gallery(label="Similar products")] | |
submit_btn = gr.Button("Find similar products!") | |
submit_btn.click(casa_ai_run_tab3, inputs=inputs, outputs=outputs) | |
casa.launch() |