SpeakerCreater / app.py
CazC's picture
init
61fdf99
raw
history blame
779 Bytes
import gradio as gr
import numpy as np
import scipy.io.wavfile
import torch
import torch.nn.functional as F
from whisperspeech.pipeline import Pipeline
def process_audio(audio_elem):
scipy.io.wavfile.write('test.mp3', 48000, audio_elem[1])
# print out details about ut
pipe = Pipeline(s2a_ref='collabora/whisperspeech:s2a-q4-base-en+pl.model')
# save audio_elem as a file
speaker = pipe.extract_spk_emb("test.mp3")
speaker = speaker.cpu().numpy() # Move tensor from GPU to CPU and convert to numpy array
print(speaker)
#save it locally
np.savez_compressed("speaker", features=speaker)
return "speaker.npz"
# Define Gradio interface
with gr.Interface(fn=process_audio, inputs="audio", outputs="file") as iface:
iface.launch()