Spaces:
Sleeping
Sleeping
Cazimir Roman
commited on
Commit
•
7e0ee7f
1
Parent(s):
41bc40f
initial commit
Browse files- app.py +78 -0
- requirements.txt +12 -0
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from langchain import HuggingFaceHub
|
4 |
+
|
5 |
+
from langchain.chains.question_answering import load_qa_chain
|
6 |
+
|
7 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
8 |
+
|
9 |
+
import os
|
10 |
+
|
11 |
+
with st.sidebar:
|
12 |
+
st.title('🌎 Summarize your webpage')
|
13 |
+
st.markdown('''
|
14 |
+
## About
|
15 |
+
This app is using:
|
16 |
+
- [Streamlit](https://streamlit.io/)
|
17 |
+
- [LangChain](https://python.langchain.com/)
|
18 |
+
- [Flan Alpaca Large](https://huggingface.co/declare-lab/flan-alpaca-large) LLM model
|
19 |
+
|
20 |
+
## How it works
|
21 |
+
- Load up a web URL
|
22 |
+
- Send the request to the LLM using the *load_qa_chain* in langchain
|
23 |
+
- Get the answer and from Flan Alpaca Large LLM (open source model on HuggingFace)
|
24 |
+
|
25 |
+
''')
|
26 |
+
st.write('Made with 🤖 by [Cazimir Roman](https://cazimir.dev)')
|
27 |
+
|
28 |
+
def load_app():
|
29 |
+
llm = HuggingFaceHub(repo_id="declare-lab/flan-alpaca-large", model_kwargs={"temperature":0, "max_length":512})
|
30 |
+
|
31 |
+
col1, col2 = st.columns([0.8, 0.2])
|
32 |
+
|
33 |
+
url = col1.text_input('Enter a webpage url here to summarize')
|
34 |
+
col2.write("")
|
35 |
+
col2.write("")
|
36 |
+
summarize = col2.button("Summarize")
|
37 |
+
|
38 |
+
if url:
|
39 |
+
loader = UnstructuredURLLoader(urls=[url])
|
40 |
+
data = loader.load()
|
41 |
+
|
42 |
+
if summarize:
|
43 |
+
with st.spinner("Summarizing..."):
|
44 |
+
chain = load_qa_chain(llm=llm, chain_type="stuff")
|
45 |
+
response = chain.run(input_documents=data, question="Summarize this article in one paragraph")
|
46 |
+
st.success(response)
|
47 |
+
|
48 |
+
def main():
|
49 |
+
|
50 |
+
st.header("Summarize your webpage")
|
51 |
+
|
52 |
+
col1, col2 = st.columns([0.8, 0.2])
|
53 |
+
|
54 |
+
container = col1.container()
|
55 |
+
|
56 |
+
with container:
|
57 |
+
hugging_face_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
58 |
+
api_key = container.text_input("Enter your HuggingFace API token", type="password", value="" if hugging_face_token == None else hugging_face_token)
|
59 |
+
st.markdown('''You can find your token [here](https://huggingface.co/settings/tokens)''')
|
60 |
+
|
61 |
+
col2.write("")
|
62 |
+
col2.write("")
|
63 |
+
submit = col2.button("Submit")
|
64 |
+
|
65 |
+
if hugging_face_token:
|
66 |
+
load_app()
|
67 |
+
|
68 |
+
# submit button is pressed
|
69 |
+
if submit:
|
70 |
+
# check if api key length correct
|
71 |
+
if len(api_key) == 37:
|
72 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
73 |
+
load_app()
|
74 |
+
else:
|
75 |
+
st.error("Api key is not correct")
|
76 |
+
|
77 |
+
if __name__ == '__main__':
|
78 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.0.137
|
2 |
+
PyPDF2
|
3 |
+
python-dotenv
|
4 |
+
streamlit==1.22.0
|
5 |
+
faiss-cpu
|
6 |
+
streamlit-extras
|
7 |
+
openai
|
8 |
+
altair<5
|
9 |
+
tiktoken
|
10 |
+
huggingface_hub
|
11 |
+
sentence_transformers
|
12 |
+
unstructured
|