Spaces:
Runtime error
Runtime error
File size: 4,226 Bytes
11c68ac 6d9ecb7 4d94a5f 95d4bcd 11c68ac e356bc7 02de360 abbb301 658e032 abbb301 ce6ebb2 abbb301 02de360 2edac28 e356bc7 c8b7141 2edac28 e356bc7 11c68ac 2edac28 02de360 0ba7cdf 02de360 99c25ce 02de360 437ae23 abbb301 9ce3e9a ce6ebb2 d341d77 abbb301 02de360 7a598bf 2edac28 e356bc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import streamlit as st
import torch
from PIL import Image
import requests
import os
##CLIP
scene_labels=['Arrest',
'Arson',
'Explosion',
'public fight',
'Normal',
'Road Accident',
'Robbery',
'Shooting',
'Stealing',
'Vandalism',
'Suspicious activity',
'Tailgating',
'Unauthorized entry',
'Protest/Demonstration',
'Drone suspicious activity',
'Fire/Smoke detection',
'Medical emergency',
'Suspicious package/object',
'Threatening',
'Attack',
'Shoplifting',
'burglary ',
'distress',
'assault']
from transformers import CLIPProcessor, CLIPModel
model_id = "openai/clip-vit-large-patch14"
processor = CLIPProcessor.from_pretrained(model_id)
model = CLIPModel.from_pretrained(model_id)
##BLIP
from transformers import pipeline
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
##LLM
st.info("Please check here- https://ai.google.dev/tutorials/web_quickstart , to get your GOOGLE API KEY. This is mandatory to use this app")
GOOGLE_API_KEY = st.text_input("Please enter your GOOGLE API KEY", type="password")
os.environ['GOOGLE_API_KEY'] = GOOGLE_API_KEY
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.prompts import PromptTemplate
from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory
template="""You are an advanced image captioning AI assistant for surveillance related images.
Your task is to refine and improve an initial image caption using relevant contextual information provided.
You will receive two inputs:
Input 1: {initial_caption} - This is the initial caption for the image, most likely grammatically incorrect
and incomplete sentence, generated by a separate not so good image captioning model.
Input 2: {context} - This is the contextual information that provides more details about the background
Your goal is to take the initial caption and the additional context, and produce a new, refined caption that
incorporates the contextual details.
Please do not speculate things which are not provided. The final caption should be grammatically correct.
Please output only the final caption."""
prompt_template = PromptTemplate(
template=template,
input_variables=["initial_caption", "context"],
)
# Title
st.title("Image Caption Surveillance")
# Input field for URL
image_url = st.text_input("Enter the URL of the image:")
# Display image if a valid URL is provided
if image_url:
try:
st.image(image_url, caption="Uploaded Image")
##CLIP
image = Image.open(requests.get(image_url, stream=True).raw)
inputs = processor(text=scene_labels, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
raw_context= scene_labels[probs.argmax(-1)]
context= 'the image is depicting scene of '+ raw_context
#context= 'the image is depicting scene of attack'
##BLIP
caption = image_to_text(image_url, max_new_tokens=200)
initial_caption= caption[0]['generated_text']
##gemini-1.0-pro-latest
##LLM
llm = ChatGoogleGenerativeAI(model="gemini-1.0-pro", google_api_key=GOOGLE_API_KEY, temperature=0.2, top_p=1, top_k=1,
safety_settings={
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
},
)
prompt=prompt_template.format(initial_caption=initial_caption, context=context)
response = llm.invoke(prompt)
final_caption = response.content
##Output
#st.write("context: ", context)
#st.write("initial_caption: ", initial_caption)
st.write("CAPTION: ", final_caption)
except Exception as e:
st.error(f"Error: {e}")
else:
st.warning("Please enter a valid image URL.")
|