CindyBSydney
commited on
Commit
•
ca1f33d
1
Parent(s):
247beb3
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
import torchvision.models as models
|
4 |
+
from joblib import load
|
5 |
+
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Transformation and device setup
|
11 |
+
device = torch.device("cpu")
|
12 |
+
data_transforms = transforms.Compose([
|
13 |
+
transforms.Resize(224),
|
14 |
+
transforms.CenterCrop(224),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
17 |
+
])
|
18 |
+
|
19 |
+
# Load the Isolation Forest model
|
20 |
+
clf = load('Models/Anomaly_MSI_MSS_Isolation_Forest_model.joblib')
|
21 |
+
|
22 |
+
# Load feature extractor
|
23 |
+
feature_extractor_path = 'Models/feature_extractor.pth'
|
24 |
+
feature_extractor = models.resnet50(weights=None)
|
25 |
+
feature_extractor.fc = nn.Sequential()
|
26 |
+
feature_extractor.load_state_dict(torch.load(feature_extractor_path, map_location=device))
|
27 |
+
feature_extractor.to(device)
|
28 |
+
feature_extractor.eval()
|
29 |
+
|
30 |
+
# Load gastric classification model
|
31 |
+
GASTRIC_MODEL_PATH = 'Gastric_Models/the_resnet_50_model.pth'
|
32 |
+
model_ft = torch.load(GASTRIC_MODEL_PATH, map_location=device)
|
33 |
+
model_ft.to(device)
|
34 |
+
model_ft.eval()
|
35 |
+
|
36 |
+
# Anomaly detection and classification function
|
37 |
+
def classify_image(uploaded_image):
|
38 |
+
image = Image.open(io.BytesIO(uploaded_image.read())).convert('RGB')
|
39 |
+
input_image = data_transforms(image).unsqueeze(0).to(device)
|
40 |
+
|
41 |
+
# Anomaly detection
|
42 |
+
if is_anomaly(clf, feature_extractor):
|
43 |
+
return "Anomaly detected. Image will not be classified.", None
|
44 |
+
|
45 |
+
# Classification
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = model_ft(input_image)
|
48 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
49 |
+
_, predicted = torch.max(outputs, 1)
|
50 |
+
|
51 |
+
predicted_class_index = predicted.item()
|
52 |
+
class_names = ['abnormal', 'normal']
|
53 |
+
predicted_class_name = class_names[predicted_class_index]
|
54 |
+
predicted_probability = probabilities[0][predicted_class_index].item() * 100
|
55 |
+
|
56 |
+
return f"Class: {predicted_class_name}, Probability: {predicted_probability:.2f}%", None
|
57 |
+
|
58 |
+
# Create Gradio interface
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=classify_image,
|
61 |
+
inputs=File(type="filepath"),
|
62 |
+
[gr.outputs.Text(), gr.outputs.Image(plot=True)],
|
63 |
+
title="Gastric Image Classifier",
|
64 |
+
description="Upload a gastric image to classify it as normal or abnormal."
|
65 |
+
)
|
66 |
+
|
67 |
+
# Run the Gradio app
|
68 |
+
iface.launch()
|