Spaces:
Running
Running
import os | |
import sys | |
import argparse | |
import subprocess | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from rvc.configs.config import Config | |
from rvc.lib.tools.validators import ( | |
validate_sampling_rate, | |
validate_f0up_key, | |
validate_f0method, | |
validate_true_false, | |
validate_tts_voices, | |
) | |
from rvc.train.extract.preparing_files import generate_config, generate_filelist | |
from rvc.lib.tools.pretrained_selector import pretrained_selector | |
from rvc.lib.process.model_fusion import model_fusion | |
from rvc.lib.process.model_information import model_information | |
config = Config() | |
current_script_directory = os.path.dirname(os.path.realpath(__file__)) | |
logs_path = os.path.join(current_script_directory, "logs") | |
subprocess.run( | |
["python", os.path.join("rvc", "lib", "tools", "prerequisites_download.py")] | |
) | |
# Infer | |
def run_infer_script( | |
f0up_key, | |
filter_radius, | |
index_rate, | |
hop_length, | |
f0method, | |
input_path, | |
output_path, | |
pth_file, | |
index_path, | |
split_audio, | |
): | |
infer_script_path = os.path.join("rvc", "infer", "infer.py") | |
command = [ | |
"python", | |
infer_script_path, | |
str(f0up_key), | |
str(filter_radius), | |
str(index_rate), | |
str(hop_length), | |
f0method, | |
input_path, | |
output_path, | |
pth_file, | |
index_path, | |
str(split_audio), | |
] | |
subprocess.run(command) | |
return f"File {input_path} inferred successfully.", output_path | |
# Batch infer | |
def run_batch_infer_script( | |
f0up_key, | |
filter_radius, | |
index_rate, | |
hop_length, | |
f0method, | |
input_folder, | |
output_folder, | |
pth_file, | |
index_path, | |
split_audio, | |
): | |
infer_script_path = os.path.join("rvc", "infer", "infer.py") | |
audio_files = [ | |
f for f in os.listdir(input_folder) if f.endswith((".mp3", ".wav", ".flac")) | |
] | |
print(f"Detected {len(audio_files)} audio files for inference.") | |
for audio_file in audio_files: | |
if "_output" in audio_file: | |
pass | |
else: | |
input_path = os.path.join(input_folder, audio_file) | |
output_file_name = os.path.splitext(os.path.basename(audio_file))[0] | |
output_path = os.path.join( | |
output_folder, | |
f"{output_file_name}_output{os.path.splitext(audio_file)[1]}", | |
) | |
print(f"Inferring {input_path}...") | |
command = [ | |
"python", | |
infer_script_path, | |
str(f0up_key), | |
str(filter_radius), | |
str(index_rate), | |
str(hop_length), | |
f0method, | |
input_path, | |
output_path, | |
pth_file, | |
index_path, | |
str(split_audio), | |
] | |
subprocess.run(command) | |
return f"Files from {input_folder} inferred successfully." | |
# TTS | |
def run_tts_script( | |
tts_text, | |
tts_voice, | |
f0up_key, | |
filter_radius, | |
index_rate, | |
hop_length, | |
f0method, | |
output_tts_path, | |
output_rvc_path, | |
pth_file, | |
index_path, | |
): | |
tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py") | |
infer_script_path = os.path.join("rvc", "infer", "infer.py") | |
if os.path.exists(output_tts_path): | |
os.remove(output_tts_path) | |
command_tts = [ | |
"python", | |
tts_script_path, | |
tts_text, | |
tts_voice, | |
output_tts_path, | |
] | |
command_infer = [ | |
"python", | |
infer_script_path, | |
str(f0up_key), | |
str(filter_radius), | |
str(index_rate), | |
str(hop_length), | |
f0method, | |
output_tts_path, | |
output_rvc_path, | |
pth_file, | |
index_path, | |
] | |
subprocess.run(command_tts) | |
subprocess.run(command_infer) | |
return f"Text {tts_text} synthesized successfully.", output_rvc_path | |
# Preprocess | |
def run_preprocess_script(model_name, dataset_path, sampling_rate): | |
per = 3.0 if config.is_half else 3.7 | |
preprocess_script_path = os.path.join("rvc", "train", "preprocess", "preprocess.py") | |
command = [ | |
"python", | |
preprocess_script_path, | |
os.path.join(logs_path, str(model_name)), | |
dataset_path, | |
str(sampling_rate), | |
str(per), | |
] | |
os.makedirs(os.path.join(logs_path, str(model_name)), exist_ok=True) | |
subprocess.run(command) | |
return f"Model {model_name} preprocessed successfully." | |
# Extract | |
def run_extract_script(model_name, rvc_version, f0method, hop_length, sampling_rate): | |
model_path = os.path.join(logs_path, str(model_name)) | |
extract_f0_script_path = os.path.join( | |
"rvc", "train", "extract", "extract_f0_print.py" | |
) | |
extract_feature_script_path = os.path.join( | |
"rvc", "train", "extract", "extract_feature_print.py" | |
) | |
command_1 = [ | |
"python", | |
extract_f0_script_path, | |
model_path, | |
f0method, | |
str(hop_length), | |
] | |
command_2 = [ | |
"python", | |
extract_feature_script_path, | |
config.device, | |
"1", | |
"0", | |
"0", | |
model_path, | |
rvc_version, | |
"True", | |
] | |
subprocess.run(command_1) | |
subprocess.run(command_2) | |
generate_config(rvc_version, sampling_rate, model_path) | |
generate_filelist(f0method, model_path, rvc_version, sampling_rate) | |
return f"Model {model_name} extracted successfully." | |
# Train | |
def run_train_script( | |
model_name, | |
rvc_version, | |
save_every_epoch, | |
save_only_latest, | |
save_every_weights, | |
total_epoch, | |
sampling_rate, | |
batch_size, | |
gpu, | |
pitch_guidance, | |
pretrained, | |
custom_pretrained, | |
g_pretrained_path=None, | |
d_pretrained_path=None, | |
): | |
f0 = 1 if str(pitch_guidance) == "True" else 0 | |
latest = 1 if str(save_only_latest) == "True" else 0 | |
save_every = 1 if str(save_every_weights) == "True" else 0 | |
if str(pretrained) == "True": | |
if str(custom_pretrained) == "False": | |
pg, pd = pretrained_selector(f0)[rvc_version][sampling_rate] | |
else: | |
if g_pretrained_path is None or d_pretrained_path is None: | |
raise ValueError( | |
"Please provide the path to the pretrained G and D models." | |
) | |
pg, pd = g_pretrained_path, d_pretrained_path | |
else: | |
pg, pd = "", "" | |
train_script_path = os.path.join("rvc", "train", "train.py") | |
command = [ | |
"python", | |
str(train_script_path), | |
"-se", | |
str(save_every_epoch), | |
"-te", | |
str(total_epoch), | |
"-pg", | |
str(pg), | |
"-pd", | |
str(pd), | |
"-sr", | |
str(sampling_rate), | |
"-bs", | |
str(batch_size), | |
"-g", | |
str(gpu), | |
"-e", | |
os.path.join(logs_path, str(model_name)), | |
"-v", | |
str(rvc_version), | |
"-l", | |
str(latest), | |
"-c", | |
"0", | |
"-sw", | |
str(save_every), | |
"-f0", | |
str(f0), | |
] | |
subprocess.run(command) | |
run_index_script(model_name, rvc_version) | |
return f"Model {model_name} trained successfully." | |
# Index | |
def run_index_script(model_name, rvc_version): | |
index_script_path = os.path.join("rvc", "train", "index_generator.py") | |
command = [ | |
"python", | |
index_script_path, | |
os.path.join(logs_path, str(model_name)), | |
rvc_version, | |
] | |
subprocess.run(command) | |
return f"Index file for {model_name} generated successfully." | |
# Model information | |
def run_model_information_script(pth_path): | |
print(model_information(pth_path)) | |
# Model fusion | |
def run_model_fusion_script(model_name, pth_path_1, pth_path_2): | |
model_fusion(model_name, pth_path_1, pth_path_2) | |
# Tensorboard | |
def run_tensorboard_script(): | |
tensorboard_script_path = os.path.join( | |
"rvc", "lib", "tools", "launch_tensorboard.py" | |
) | |
command = [ | |
"python", | |
tensorboard_script_path, | |
] | |
subprocess.run(command) | |
# Download | |
def run_download_script(model_link): | |
download_script_path = os.path.join("rvc", "lib", "tools", "model_download.py") | |
command = [ | |
"python", | |
download_script_path, | |
model_link, | |
] | |
subprocess.run(command) | |
return f"Model downloaded successfully." | |
# Parse arguments | |
def parse_arguments(): | |
parser = argparse.ArgumentParser( | |
description="Run the main.py script with specific parameters." | |
) | |
subparsers = parser.add_subparsers( | |
title="subcommands", dest="mode", help="Choose a mode" | |
) | |
# Parser for 'infer' mode | |
infer_parser = subparsers.add_parser("infer", help="Run inference") | |
infer_parser.add_argument( | |
"f0up_key", | |
type=validate_f0up_key, | |
help="Value for f0up_key (-24 to +24)", | |
) | |
infer_parser.add_argument( | |
"filter_radius", | |
type=str, | |
help="Value for filter_radius (0 to 10)", | |
) | |
infer_parser.add_argument( | |
"index_rate", | |
type=str, | |
help="Value for index_rate (0.0 to 1)", | |
) | |
infer_parser.add_argument( | |
"hop_length", | |
type=str, | |
help="Value for hop_length (1 to 512)", | |
) | |
infer_parser.add_argument( | |
"f0method", | |
type=validate_f0method, | |
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)", | |
) | |
infer_parser.add_argument( | |
"input_path", type=str, help="Input path (enclose in double quotes)" | |
) | |
infer_parser.add_argument( | |
"output_path", type=str, help="Output path (enclose in double quotes)" | |
) | |
infer_parser.add_argument( | |
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)" | |
) | |
infer_parser.add_argument( | |
"index_path", | |
type=str, | |
help="Path to the .index file (enclose in double quotes)", | |
) | |
infer_parser.add_argument( | |
"split_audio", | |
type=str, | |
help="Enable split audio ( better results )", | |
) | |
# Parser for 'batch_infer' mode | |
batch_infer_parser = subparsers.add_parser( | |
"batch_infer", help="Run batch inference" | |
) | |
batch_infer_parser.add_argument( | |
"f0up_key", | |
type=validate_f0up_key, | |
help="Value for f0up_key (-24 to +24)", | |
) | |
batch_infer_parser.add_argument( | |
"filter_radius", | |
type=str, | |
help="Value for filter_radius (0 to 10)", | |
) | |
batch_infer_parser.add_argument( | |
"index_rate", | |
type=str, | |
help="Value for index_rate (0.0 to 1)", | |
) | |
batch_infer_parser.add_argument( | |
"hop_length", | |
type=str, | |
help="Value for hop_length (1 to 512)", | |
) | |
batch_infer_parser.add_argument( | |
"f0method", | |
type=validate_f0method, | |
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)", | |
) | |
batch_infer_parser.add_argument( | |
"input_folder", type=str, help="Input folder (enclose in double quotes)" | |
) | |
batch_infer_parser.add_argument( | |
"output_folder", type=str, help="Output folder (enclose in double quotes)" | |
) | |
batch_infer_parser.add_argument( | |
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)" | |
) | |
batch_infer_parser.add_argument( | |
"index_path", | |
type=str, | |
help="Path to the .index file (enclose in double quotes)", | |
) | |
# Parser for 'tts' mode | |
tts_parser = subparsers.add_parser("tts", help="Run TTS") | |
tts_parser.add_argument( | |
"tts_text", | |
type=str, | |
help="Text to be synthesized (enclose in double quotes)", | |
) | |
tts_parser.add_argument( | |
"tts_voice", | |
type=validate_tts_voices, | |
help="Voice to be used (enclose in double quotes)", | |
) | |
tts_parser.add_argument( | |
"f0up_key", | |
type=validate_f0up_key, | |
help="Value for f0up_key (-24 to +24)", | |
) | |
tts_parser.add_argument( | |
"filter_radius", | |
type=str, | |
help="Value for filter_radius (0 to 10)", | |
) | |
tts_parser.add_argument( | |
"index_rate", | |
type=str, | |
help="Value for index_rate (0.0 to 1)", | |
) | |
tts_parser.add_argument( | |
"hop_length", | |
type=str, | |
help="Value for hop_length (1 to 512)", | |
) | |
tts_parser.add_argument( | |
"f0method", | |
type=validate_f0method, | |
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)", | |
) | |
tts_parser.add_argument( | |
"output_tts_path", type=str, help="Output tts path (enclose in double quotes)" | |
) | |
tts_parser.add_argument( | |
"output_rvc_path", type=str, help="Output rvc path (enclose in double quotes)" | |
) | |
tts_parser.add_argument( | |
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)" | |
) | |
tts_parser.add_argument( | |
"index_path", | |
type=str, | |
help="Path to the .index file (enclose in double quotes)", | |
) | |
# Parser for 'preprocess' mode | |
preprocess_parser = subparsers.add_parser("preprocess", help="Run preprocessing") | |
preprocess_parser.add_argument( | |
"model_name", type=str, help="Name of the model (enclose in double quotes)" | |
) | |
preprocess_parser.add_argument( | |
"dataset_path", | |
type=str, | |
help="Path to the dataset (enclose in double quotes)", | |
) | |
preprocess_parser.add_argument( | |
"sampling_rate", | |
type=validate_sampling_rate, | |
help="Sampling rate (32000, 40000 or 48000)", | |
) | |
# Parser for 'extract' mode | |
extract_parser = subparsers.add_parser("extract", help="Run extract") | |
extract_parser.add_argument( | |
"model_name", | |
type=str, | |
help="Name of the model (enclose in double quotes)", | |
) | |
extract_parser.add_argument( | |
"rvc_version", | |
type=str, | |
help="Version of the model (v1 or v2)", | |
) | |
extract_parser.add_argument( | |
"f0method", | |
type=validate_f0method, | |
help="Value for f0method (pm, dio, crepe, crepe-tiny, mangio-crepe, mangio-crepe-tiny, harvest, rmvpe)", | |
) | |
extract_parser.add_argument( | |
"hop_length", | |
type=str, | |
help="Value for hop_length (1 to 512)", | |
) | |
extract_parser.add_argument( | |
"sampling_rate", | |
type=validate_sampling_rate, | |
help="Sampling rate (32000, 40000 or 48000)", | |
) | |
# Parser for 'train' mode | |
train_parser = subparsers.add_parser("train", help="Run training") | |
train_parser.add_argument( | |
"model_name", | |
type=str, | |
help="Name of the model (enclose in double quotes)", | |
) | |
train_parser.add_argument( | |
"rvc_version", | |
type=str, | |
help="Version of the model (v1 or v2)", | |
) | |
train_parser.add_argument( | |
"save_every_epoch", | |
type=str, | |
help="Save every epoch", | |
) | |
train_parser.add_argument( | |
"save_only_latest", | |
type=str, | |
help="Save weight only at last epoch", | |
) | |
train_parser.add_argument( | |
"save_every_weights", | |
type=str, | |
help="Save weight every epoch", | |
) | |
train_parser.add_argument( | |
"total_epoch", | |
type=str, | |
help="Total epoch", | |
) | |
train_parser.add_argument( | |
"sampling_rate", | |
type=validate_sampling_rate, | |
help="Sampling rate (32000, 40000, or 48000)", | |
) | |
train_parser.add_argument( | |
"batch_size", | |
type=str, | |
help="Batch size", | |
) | |
train_parser.add_argument( | |
"gpu", | |
type=str, | |
help="GPU number (0 to 10 separated by -)", | |
) | |
train_parser.add_argument( | |
"pitch_guidance", | |
type=validate_true_false, | |
help="Pitch guidance (True or False)", | |
) | |
train_parser.add_argument( | |
"pretrained", | |
type=validate_true_false, | |
help="Pretrained (True or False)", | |
) | |
train_parser.add_argument( | |
"custom_pretrained", | |
type=validate_true_false, | |
help="Custom pretrained (True or False)", | |
) | |
train_parser.add_argument( | |
"g_pretrained_path", | |
type=str, | |
nargs="?", | |
default=None, | |
help="Path to the pretrained G file (enclose in double quotes)", | |
) | |
train_parser.add_argument( | |
"d_pretrained_path", | |
type=str, | |
nargs="?", | |
default=None, | |
help="Path to the pretrained D file (enclose in double quotes)", | |
) | |
# Parser for 'index' mode | |
index_parser = subparsers.add_parser("index", help="Generate index file") | |
index_parser.add_argument( | |
"model_name", | |
type=str, | |
help="Name of the model (enclose in double quotes)", | |
) | |
index_parser.add_argument( | |
"rvc_version", | |
type=str, | |
help="Version of the model (v1 or v2)", | |
) | |
# Parser for 'model_information' mode | |
model_information_parser = subparsers.add_parser( | |
"model_information", help="Print model information" | |
) | |
model_information_parser.add_argument( | |
"pth_path", | |
type=str, | |
help="Path to the .pth file (enclose in double quotes)", | |
) | |
# Parser for 'model_fusion' mode | |
model_fusion_parser = subparsers.add_parser("model_fusion", help="Fuse two models") | |
model_fusion_parser.add_argument( | |
"model_name", | |
type=str, | |
help="Name of the model (enclose in double quotes)", | |
) | |
model_fusion_parser.add_argument( | |
"pth_path_1", | |
type=str, | |
help="Path to the first .pth file (enclose in double quotes)", | |
) | |
model_fusion_parser.add_argument( | |
"pth_path_2", | |
type=str, | |
help="Path to the second .pth file (enclose in double quotes)", | |
) | |
# Parser for 'tensorboard' mode | |
subparsers.add_parser("tensorboard", help="Run tensorboard") | |
# Parser for 'download' mode | |
download_parser = subparsers.add_parser("download", help="Download models") | |
download_parser.add_argument( | |
"model_link", | |
type=str, | |
help="Link of the model (enclose in double quotes)", | |
) | |
return parser.parse_args() | |
def main(): | |
if len(sys.argv) == 1: | |
print("Please run the script with '-h' for more information.") | |
sys.exit(1) | |
args = parse_arguments() | |
try: | |
if args.mode == "infer": | |
run_infer_script( | |
args.f0up_key, | |
args.filter_radius, | |
args.index_rate, | |
args.hop_length, | |
args.f0method, | |
args.input_path, | |
args.output_path, | |
args.pth_file, | |
args.index_path, | |
args.split_audio, | |
) | |
elif args.mode == "batch_infer": | |
run_batch_infer_script( | |
args.f0up_key, | |
args.filter_radius, | |
args.index_rate, | |
args.hop_length, | |
args.f0method, | |
args.input_folder, | |
args.output_folder, | |
args.pth_file, | |
args.index_path, | |
) | |
elif args.mode == "tts": | |
run_tts_script( | |
args.tts_text, | |
args.tts_voice, | |
args.f0up_key, | |
args.filter_radius, | |
args.index_rate, | |
args.hop_length, | |
args.f0method, | |
args.output_tts_path, | |
args.output_rvc_path, | |
args.pth_file, | |
args.index_path, | |
) | |
elif args.mode == "preprocess": | |
run_preprocess_script( | |
args.model_name, | |
args.dataset_path, | |
str(args.sampling_rate), | |
) | |
elif args.mode == "extract": | |
run_extract_script( | |
args.model_name, | |
args.rvc_version, | |
args.f0method, | |
args.hop_length, | |
args.sampling_rate, | |
) | |
elif args.mode == "train": | |
run_train_script( | |
args.model_name, | |
args.rvc_version, | |
args.save_every_epoch, | |
args.save_only_latest, | |
args.save_every_weights, | |
args.total_epoch, | |
args.sampling_rate, | |
args.batch_size, | |
args.gpu, | |
args.pitch_guidance, | |
args.pretrained, | |
args.custom_pretrained, | |
args.g_pretrained_path, | |
args.d_pretrained_path, | |
) | |
elif args.mode == "index": | |
run_index_script( | |
args.model_name, | |
args.rvc_version, | |
) | |
elif args.mode == "model_information": | |
run_model_information_script( | |
args.pth_path, | |
) | |
elif args.mode == "model_fusion": | |
run_model_fusion_script( | |
args.model_name, | |
args.pth_path_1, | |
args.pth_path_2, | |
) | |
elif args.mode == "tensorboard": | |
run_tensorboard_script() | |
elif args.mode == "download": | |
run_download_script( | |
args.model_link, | |
) | |
except Exception as error: | |
print(f"Error: {error}") | |
if __name__ == "__main__": | |
main() | |