Applio / core.py
Aitron Emper
Upload core.py
b117731 verified
import os
import sys
import argparse
import subprocess
now_dir = os.getcwd()
sys.path.append(now_dir)
from rvc.configs.config import Config
from rvc.lib.tools.validators import (
validate_sampling_rate,
validate_f0up_key,
validate_f0method,
validate_true_false,
validate_tts_voices,
)
from rvc.train.extract.preparing_files import generate_config, generate_filelist
from rvc.lib.tools.pretrained_selector import pretrained_selector
from rvc.lib.process.model_fusion import model_fusion
from rvc.lib.process.model_information import model_information
config = Config()
current_script_directory = os.path.dirname(os.path.realpath(__file__))
logs_path = os.path.join(current_script_directory, "logs")
subprocess.run(
["python", os.path.join("rvc", "lib", "tools", "prerequisites_download.py")]
)
# Infer
def run_infer_script(
f0up_key,
filter_radius,
index_rate,
hop_length,
f0method,
input_path,
output_path,
pth_file,
index_path,
split_audio,
):
infer_script_path = os.path.join("rvc", "infer", "infer.py")
command = [
"python",
infer_script_path,
str(f0up_key),
str(filter_radius),
str(index_rate),
str(hop_length),
f0method,
input_path,
output_path,
pth_file,
index_path,
str(split_audio),
]
subprocess.run(command)
return f"File {input_path} inferred successfully.", output_path
# Batch infer
def run_batch_infer_script(
f0up_key,
filter_radius,
index_rate,
hop_length,
f0method,
input_folder,
output_folder,
pth_file,
index_path,
split_audio,
):
infer_script_path = os.path.join("rvc", "infer", "infer.py")
audio_files = [
f for f in os.listdir(input_folder) if f.endswith((".mp3", ".wav", ".flac"))
]
print(f"Detected {len(audio_files)} audio files for inference.")
for audio_file in audio_files:
if "_output" in audio_file:
pass
else:
input_path = os.path.join(input_folder, audio_file)
output_file_name = os.path.splitext(os.path.basename(audio_file))[0]
output_path = os.path.join(
output_folder,
f"{output_file_name}_output{os.path.splitext(audio_file)[1]}",
)
print(f"Inferring {input_path}...")
command = [
"python",
infer_script_path,
str(f0up_key),
str(filter_radius),
str(index_rate),
str(hop_length),
f0method,
input_path,
output_path,
pth_file,
index_path,
str(split_audio),
]
subprocess.run(command)
return f"Files from {input_folder} inferred successfully."
# TTS
def run_tts_script(
tts_text,
tts_voice,
f0up_key,
filter_radius,
index_rate,
hop_length,
f0method,
output_tts_path,
output_rvc_path,
pth_file,
index_path,
):
tts_script_path = os.path.join("rvc", "lib", "tools", "tts.py")
infer_script_path = os.path.join("rvc", "infer", "infer.py")
if os.path.exists(output_tts_path):
os.remove(output_tts_path)
command_tts = [
"python",
tts_script_path,
tts_text,
tts_voice,
output_tts_path,
]
command_infer = [
"python",
infer_script_path,
str(f0up_key),
str(filter_radius),
str(index_rate),
str(hop_length),
f0method,
output_tts_path,
output_rvc_path,
pth_file,
index_path,
]
subprocess.run(command_tts)
subprocess.run(command_infer)
return f"Text {tts_text} synthesized successfully.", output_rvc_path
# Preprocess
def run_preprocess_script(model_name, dataset_path, sampling_rate):
per = 3.0 if config.is_half else 3.7
preprocess_script_path = os.path.join("rvc", "train", "preprocess", "preprocess.py")
command = [
"python",
preprocess_script_path,
os.path.join(logs_path, str(model_name)),
dataset_path,
str(sampling_rate),
str(per),
]
os.makedirs(os.path.join(logs_path, str(model_name)), exist_ok=True)
subprocess.run(command)
return f"Model {model_name} preprocessed successfully."
# Extract
def run_extract_script(model_name, rvc_version, f0method, hop_length, sampling_rate):
model_path = os.path.join(logs_path, str(model_name))
extract_f0_script_path = os.path.join(
"rvc", "train", "extract", "extract_f0_print.py"
)
extract_feature_script_path = os.path.join(
"rvc", "train", "extract", "extract_feature_print.py"
)
command_1 = [
"python",
extract_f0_script_path,
model_path,
f0method,
str(hop_length),
]
command_2 = [
"python",
extract_feature_script_path,
config.device,
"1",
"0",
"0",
model_path,
rvc_version,
"True",
]
subprocess.run(command_1)
subprocess.run(command_2)
generate_config(rvc_version, sampling_rate, model_path)
generate_filelist(f0method, model_path, rvc_version, sampling_rate)
return f"Model {model_name} extracted successfully."
# Train
def run_train_script(
model_name,
rvc_version,
save_every_epoch,
save_only_latest,
save_every_weights,
total_epoch,
sampling_rate,
batch_size,
gpu,
pitch_guidance,
pretrained,
custom_pretrained,
g_pretrained_path=None,
d_pretrained_path=None,
):
f0 = 1 if str(pitch_guidance) == "True" else 0
latest = 1 if str(save_only_latest) == "True" else 0
save_every = 1 if str(save_every_weights) == "True" else 0
if str(pretrained) == "True":
if str(custom_pretrained) == "False":
pg, pd = pretrained_selector(f0)[rvc_version][sampling_rate]
else:
if g_pretrained_path is None or d_pretrained_path is None:
raise ValueError(
"Please provide the path to the pretrained G and D models."
)
pg, pd = g_pretrained_path, d_pretrained_path
else:
pg, pd = "", ""
train_script_path = os.path.join("rvc", "train", "train.py")
command = [
"python",
str(train_script_path),
"-se",
str(save_every_epoch),
"-te",
str(total_epoch),
"-pg",
str(pg),
"-pd",
str(pd),
"-sr",
str(sampling_rate),
"-bs",
str(batch_size),
"-g",
str(gpu),
"-e",
os.path.join(logs_path, str(model_name)),
"-v",
str(rvc_version),
"-l",
str(latest),
"-c",
"0",
"-sw",
str(save_every),
"-f0",
str(f0),
]
subprocess.run(command)
run_index_script(model_name, rvc_version)
return f"Model {model_name} trained successfully."
# Index
def run_index_script(model_name, rvc_version):
index_script_path = os.path.join("rvc", "train", "index_generator.py")
command = [
"python",
index_script_path,
os.path.join(logs_path, str(model_name)),
rvc_version,
]
subprocess.run(command)
return f"Index file for {model_name} generated successfully."
# Model information
def run_model_information_script(pth_path):
print(model_information(pth_path))
# Model fusion
def run_model_fusion_script(model_name, pth_path_1, pth_path_2):
model_fusion(model_name, pth_path_1, pth_path_2)
# Tensorboard
def run_tensorboard_script():
tensorboard_script_path = os.path.join(
"rvc", "lib", "tools", "launch_tensorboard.py"
)
command = [
"python",
tensorboard_script_path,
]
subprocess.run(command)
# Download
def run_download_script(model_link):
download_script_path = os.path.join("rvc", "lib", "tools", "model_download.py")
command = [
"python",
download_script_path,
model_link,
]
subprocess.run(command)
return f"Model downloaded successfully."
# Parse arguments
def parse_arguments():
parser = argparse.ArgumentParser(
description="Run the main.py script with specific parameters."
)
subparsers = parser.add_subparsers(
title="subcommands", dest="mode", help="Choose a mode"
)
# Parser for 'infer' mode
infer_parser = subparsers.add_parser("infer", help="Run inference")
infer_parser.add_argument(
"f0up_key",
type=validate_f0up_key,
help="Value for f0up_key (-24 to +24)",
)
infer_parser.add_argument(
"filter_radius",
type=str,
help="Value for filter_radius (0 to 10)",
)
infer_parser.add_argument(
"index_rate",
type=str,
help="Value for index_rate (0.0 to 1)",
)
infer_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
infer_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)",
)
infer_parser.add_argument(
"input_path", type=str, help="Input path (enclose in double quotes)"
)
infer_parser.add_argument(
"output_path", type=str, help="Output path (enclose in double quotes)"
)
infer_parser.add_argument(
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)"
)
infer_parser.add_argument(
"index_path",
type=str,
help="Path to the .index file (enclose in double quotes)",
)
infer_parser.add_argument(
"split_audio",
type=str,
help="Enable split audio ( better results )",
)
# Parser for 'batch_infer' mode
batch_infer_parser = subparsers.add_parser(
"batch_infer", help="Run batch inference"
)
batch_infer_parser.add_argument(
"f0up_key",
type=validate_f0up_key,
help="Value for f0up_key (-24 to +24)",
)
batch_infer_parser.add_argument(
"filter_radius",
type=str,
help="Value for filter_radius (0 to 10)",
)
batch_infer_parser.add_argument(
"index_rate",
type=str,
help="Value for index_rate (0.0 to 1)",
)
batch_infer_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
batch_infer_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)",
)
batch_infer_parser.add_argument(
"input_folder", type=str, help="Input folder (enclose in double quotes)"
)
batch_infer_parser.add_argument(
"output_folder", type=str, help="Output folder (enclose in double quotes)"
)
batch_infer_parser.add_argument(
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)"
)
batch_infer_parser.add_argument(
"index_path",
type=str,
help="Path to the .index file (enclose in double quotes)",
)
# Parser for 'tts' mode
tts_parser = subparsers.add_parser("tts", help="Run TTS")
tts_parser.add_argument(
"tts_text",
type=str,
help="Text to be synthesized (enclose in double quotes)",
)
tts_parser.add_argument(
"tts_voice",
type=validate_tts_voices,
help="Voice to be used (enclose in double quotes)",
)
tts_parser.add_argument(
"f0up_key",
type=validate_f0up_key,
help="Value for f0up_key (-24 to +24)",
)
tts_parser.add_argument(
"filter_radius",
type=str,
help="Value for filter_radius (0 to 10)",
)
tts_parser.add_argument(
"index_rate",
type=str,
help="Value for index_rate (0.0 to 1)",
)
tts_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
tts_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, harvest, rmvpe)",
)
tts_parser.add_argument(
"output_tts_path", type=str, help="Output tts path (enclose in double quotes)"
)
tts_parser.add_argument(
"output_rvc_path", type=str, help="Output rvc path (enclose in double quotes)"
)
tts_parser.add_argument(
"pth_file", type=str, help="Path to the .pth file (enclose in double quotes)"
)
tts_parser.add_argument(
"index_path",
type=str,
help="Path to the .index file (enclose in double quotes)",
)
# Parser for 'preprocess' mode
preprocess_parser = subparsers.add_parser("preprocess", help="Run preprocessing")
preprocess_parser.add_argument(
"model_name", type=str, help="Name of the model (enclose in double quotes)"
)
preprocess_parser.add_argument(
"dataset_path",
type=str,
help="Path to the dataset (enclose in double quotes)",
)
preprocess_parser.add_argument(
"sampling_rate",
type=validate_sampling_rate,
help="Sampling rate (32000, 40000 or 48000)",
)
# Parser for 'extract' mode
extract_parser = subparsers.add_parser("extract", help="Run extract")
extract_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
extract_parser.add_argument(
"rvc_version",
type=str,
help="Version of the model (v1 or v2)",
)
extract_parser.add_argument(
"f0method",
type=validate_f0method,
help="Value for f0method (pm, dio, crepe, crepe-tiny, mangio-crepe, mangio-crepe-tiny, harvest, rmvpe)",
)
extract_parser.add_argument(
"hop_length",
type=str,
help="Value for hop_length (1 to 512)",
)
extract_parser.add_argument(
"sampling_rate",
type=validate_sampling_rate,
help="Sampling rate (32000, 40000 or 48000)",
)
# Parser for 'train' mode
train_parser = subparsers.add_parser("train", help="Run training")
train_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
train_parser.add_argument(
"rvc_version",
type=str,
help="Version of the model (v1 or v2)",
)
train_parser.add_argument(
"save_every_epoch",
type=str,
help="Save every epoch",
)
train_parser.add_argument(
"save_only_latest",
type=str,
help="Save weight only at last epoch",
)
train_parser.add_argument(
"save_every_weights",
type=str,
help="Save weight every epoch",
)
train_parser.add_argument(
"total_epoch",
type=str,
help="Total epoch",
)
train_parser.add_argument(
"sampling_rate",
type=validate_sampling_rate,
help="Sampling rate (32000, 40000, or 48000)",
)
train_parser.add_argument(
"batch_size",
type=str,
help="Batch size",
)
train_parser.add_argument(
"gpu",
type=str,
help="GPU number (0 to 10 separated by -)",
)
train_parser.add_argument(
"pitch_guidance",
type=validate_true_false,
help="Pitch guidance (True or False)",
)
train_parser.add_argument(
"pretrained",
type=validate_true_false,
help="Pretrained (True or False)",
)
train_parser.add_argument(
"custom_pretrained",
type=validate_true_false,
help="Custom pretrained (True or False)",
)
train_parser.add_argument(
"g_pretrained_path",
type=str,
nargs="?",
default=None,
help="Path to the pretrained G file (enclose in double quotes)",
)
train_parser.add_argument(
"d_pretrained_path",
type=str,
nargs="?",
default=None,
help="Path to the pretrained D file (enclose in double quotes)",
)
# Parser for 'index' mode
index_parser = subparsers.add_parser("index", help="Generate index file")
index_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
index_parser.add_argument(
"rvc_version",
type=str,
help="Version of the model (v1 or v2)",
)
# Parser for 'model_information' mode
model_information_parser = subparsers.add_parser(
"model_information", help="Print model information"
)
model_information_parser.add_argument(
"pth_path",
type=str,
help="Path to the .pth file (enclose in double quotes)",
)
# Parser for 'model_fusion' mode
model_fusion_parser = subparsers.add_parser("model_fusion", help="Fuse two models")
model_fusion_parser.add_argument(
"model_name",
type=str,
help="Name of the model (enclose in double quotes)",
)
model_fusion_parser.add_argument(
"pth_path_1",
type=str,
help="Path to the first .pth file (enclose in double quotes)",
)
model_fusion_parser.add_argument(
"pth_path_2",
type=str,
help="Path to the second .pth file (enclose in double quotes)",
)
# Parser for 'tensorboard' mode
subparsers.add_parser("tensorboard", help="Run tensorboard")
# Parser for 'download' mode
download_parser = subparsers.add_parser("download", help="Download models")
download_parser.add_argument(
"model_link",
type=str,
help="Link of the model (enclose in double quotes)",
)
return parser.parse_args()
def main():
if len(sys.argv) == 1:
print("Please run the script with '-h' for more information.")
sys.exit(1)
args = parse_arguments()
try:
if args.mode == "infer":
run_infer_script(
args.f0up_key,
args.filter_radius,
args.index_rate,
args.hop_length,
args.f0method,
args.input_path,
args.output_path,
args.pth_file,
args.index_path,
args.split_audio,
)
elif args.mode == "batch_infer":
run_batch_infer_script(
args.f0up_key,
args.filter_radius,
args.index_rate,
args.hop_length,
args.f0method,
args.input_folder,
args.output_folder,
args.pth_file,
args.index_path,
)
elif args.mode == "tts":
run_tts_script(
args.tts_text,
args.tts_voice,
args.f0up_key,
args.filter_radius,
args.index_rate,
args.hop_length,
args.f0method,
args.output_tts_path,
args.output_rvc_path,
args.pth_file,
args.index_path,
)
elif args.mode == "preprocess":
run_preprocess_script(
args.model_name,
args.dataset_path,
str(args.sampling_rate),
)
elif args.mode == "extract":
run_extract_script(
args.model_name,
args.rvc_version,
args.f0method,
args.hop_length,
args.sampling_rate,
)
elif args.mode == "train":
run_train_script(
args.model_name,
args.rvc_version,
args.save_every_epoch,
args.save_only_latest,
args.save_every_weights,
args.total_epoch,
args.sampling_rate,
args.batch_size,
args.gpu,
args.pitch_guidance,
args.pretrained,
args.custom_pretrained,
args.g_pretrained_path,
args.d_pretrained_path,
)
elif args.mode == "index":
run_index_script(
args.model_name,
args.rvc_version,
)
elif args.mode == "model_information":
run_model_information_script(
args.pth_path,
)
elif args.mode == "model_fusion":
run_model_fusion_script(
args.model_name,
args.pth_path_1,
args.pth_path_2,
)
elif args.mode == "tensorboard":
run_tensorboard_script()
elif args.mode == "download":
run_download_script(
args.model_link,
)
except Exception as error:
print(f"Error: {error}")
if __name__ == "__main__":
main()