File size: 8,465 Bytes
a2d4414
 
1b365a3
cc2e6d4
a2d4414
 
f11ab26
a2d4414
f11ab26
123c88a
a2d4414
 
 
 
 
 
5085b6b
a2d4414
5085b6b
a2d4414
 
 
5085b6b
a2d4414
5085b6b
a2d4414
5085b6b
a2d4414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f74fd
a9d22e9
a2d4414
 
 
 
 
 
3e60759
 
 
a2d4414
 
 
 
 
 
77b64d3
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d4414
77b64d3
 
a2d4414
77b64d3
 
a2d4414
77b64d3
 
a2d4414
77b64d3
 
 
 
 
a2d4414
 
 
 
 
82f74fd
123c88a
a2d4414
 
 
 
 
 
0a57310
a2d4414
3e60759
 
 
a2d4414
0a57310
a2d4414
 
 
 
 
 
 
82f74fd
a2d4414
a9d22e9
5cb40c6
 
 
a9d22e9
5cb40c6
 
82f74fd
a9d22e9
 
82f74fd
a9d22e9
 
 
82f74fd
5cb40c6
acee64d
82f74fd
acee64d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f74fd
a2d4414
 
 
5cb40c6
a2d4414
 
 
 
 
bc3347c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import gradio as gr
import clueai
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v2")
model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v2").half()
# 使用
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

def preprocess(text):
  text = text.replace("\n", "\\n").replace("\t", "\\t")
  return text

def postprocess(text):
  return text.replace("\\n", "\n").replace("\\t", "\t").replace('%20','  ').replace(" ", " ")

def answer(text, sample=True, top_p=0.9, temperature=0.7):
  '''sample:是否抽样。生成任务,可以设置为True;
  top_p:0-1之间,生成的内容越多样'''
  text = preprocess(text)
  encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=1024, return_tensors="pt").to(device) 
  if not sample:
    out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=1024, num_beams=1, length_penalty=0.6)
  else:
    out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=1024, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=3)
  out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
  return postprocess(out_text[0])

def clear_session():
    return '', None

def chatyuan_bot(input, history):
    history = history or []
    if len(history) > 5:
       history = history[-5:]

    context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
    print(context)

    input_text = context + "\n用户:" + input + "\n小元:"
    output_text = answer(input_text)
    history.append((input, output_text))
    print(history)
    return history, history

block = gr.Blocks()

with block as demo:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
        <font size=4>回答来自ChatYuan, 是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点 | Answer generated by ChatYuan model</font>

    """)
    chatbot = gr.Chatbot(label='ChatYuan')
    message = gr.Textbox()
    state = gr.State()
    message.submit(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    with gr.Row():
      clear_history = gr.Button("👋 清除历史对话 | Clear")
      clear = gr.Button('🧹 清除发送框 | Clear Input')
      send = gr.Button("🚀 发送 | Send")
      
    send.click(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    clear.click(lambda: None, None, message, queue=False)
    clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)
    

def ChatYuan(api_key, text_prompt):

    cl = clueai.Client(api_key,
                        check_api_key=True)
    # generate a prediction for a prompt
    # 需要返回得分的话,指定return_likelihoods="GENERATION"
    prediction = cl.generate(model_name='ChatYuan-large', prompt=text_prompt)
    # print the predicted text
    print('prediction: {}'.format(prediction.generations[0].text))
    response = prediction.generations[0].text
    if response == '':
        response = "很抱歉,我无法回答这个问题"

    return response
  
def chatyuan_bot_api(api_key, input, history):
    history = history or []

    if len(history) > 5:
      history = history[-5:]

    context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
    print(context)

    input_text = context + "\n用户:" + input + "\n小元:"
    output_text = ChatYuan(api_key, input_text)
    history.append((input, output_text))
    print(history)
    return history, history

block = gr.Blocks()

with block as demo_1:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
    <font size=4>回答来自ChatYuan, 以上是模型生成的结果, 请谨慎辨别和参考, 不代表任何人观点  | Answer generated by ChatYuan model</font>
    
    <font size=4>在使用此功能前,你需要有个API key. API key 可以通过这个<a href='https://www.clueai.cn/' target="_blank">平台</a>获取</font>
    """)
    api_key = gr.inputs.Textbox(label="请输入你的api-key(必填)", default="", type='password')
    chatbot = gr.Chatbot(label='ChatYuan')
    message = gr.Textbox()
    state = gr.State()
    message.submit(chatyuan_bot_api, inputs=[api_key,message, state], outputs=[chatbot, state])
    with gr.Row():
      clear_history = gr.Button("👋 清除历史对话 | Clear Context")
      clear = gr.Button('🧹 清除发送框 | Clear Input')
      send = gr.Button("🚀 发送 | Send")

    send.click(chatyuan_bot_api, inputs=[api_key,message, state], outputs=[chatbot, state])
    clear.click(lambda: None, None, message, queue=False)
    clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)

block = gr.Blocks()
with block as introduction:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
    
<font size=4>😉ChatYuan: 元语功能型对话大模型 | General Model for Dialogue with ChatYuan
<br>
👏ChatYuan-large-v2是一个支持中英双语的功能型对话语言大模型,是继ChatYuan系列中ChatYuan-large-v1开源后的又一个开源模型。ChatYuan-large-v2使用了和 v1版本相同的技术方案,在微调数据、人类反馈强化学习、思维链等方面进行了优化。
<br>
ChatYuan large v2 is an open-source large language model for dialogue, supports both Chinese and English languages, and in ChatGPT style.
<br>
ChatYuan-large-v2是ChatYuan系列中以轻量化实现高质量效果的模型之一,用户可以在消费级显卡、 PC甚至手机上进行推理(INT4 最低只需 400M )。
<br>
在Chatyuan-large-v1的原有功能的基础上,我们给模型进行了如下优化:
- 新增了中英双语对话能力。
- 新增了拒答能力。对于一些危险、有害的问题,学会了拒答处理。
- 新增了代码生成功能。对于基础代码生成进行了一定程度优化。
- 增强了基础能力。原有上下文问答、创意性写作能力明显提升。
- 新增了表格生成功能。使生成的表格内容和格式更适配。
- 增强了基础数学运算能力。
- 最大长度token数扩展到4096。
- 增强了模拟情景能力。.<br>
<br>
Based on the original functions of Chatyuan-large-v1, we optimized the model as follows:

-Added the ability to speak in both Chinese and English.

-Added the ability to refuse to answer. Learn to refuse to answer some dangerous and harmful questions.

-Added code generation functionality. Basic code generation has been optimized to a certain extent.

-Enhanced basic capabilities. The original contextual Q&A and creative writing skills have significantly improved.

-Added a table generation function. Make the generated table content and format more appropriate.

-Enhanced basic mathematical computing capabilities.

-The maximum number of length tokens has been expanded to 4096.

-Enhanced ability to simulate scenarios< br>

<br>
👀<a href='https://www.cluebenchmarks.com/clueai.html'>PromptCLUE-large</a>在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成.  <br> 
<br>
 &nbsp; <a href='https://modelscope.cn/models/ClueAI/ChatYuan-large/summary' target="_blank">ModelScope</a> &nbsp; | &nbsp; <a href='https://huggingface.co/ClueAI/ChatYuan-large-v1' target="_blank">Huggingface</a> &nbsp; | &nbsp; <a href='https://www.clueai.cn' target="_blank">官网体验场</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/clueai-python#ChatYuan%E5%8A%9F%E8%83%BD%E5%AF%B9%E8%AF%9D' target="_blank">ChatYuan-API</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/ChatYuan' target="_blank">Github项目地址</a> &nbsp; | &nbsp; <a href='https://openi.pcl.ac.cn/ChatYuan/ChatYuan/src/branch/main/Fine_tuning_ChatYuan_large_with_pCLUE.ipynb' target="_blank">OpenI免费试用</a> &nbsp;
</font>
    """)


gui = gr.TabbedInterface(interface_list=[introduction,demo, demo_1], tab_names=["相关介绍","开源模型", "API调用"])
gui.launch(quiet=True,show_api=False, share = False)