File size: 6,282 Bytes
a2d4414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("ClueAI/ChatYuan-large-v2")
model = T5ForConditionalGeneration.from_pretrained("ClueAI/ChatYuan-large-v2")
# 使用
device='cpu'

def preprocess(text):
  text = text.replace("\n", "\\n").replace("\t", "\\t")
  return text

def postprocess(text):
  return text.replace("\\n", "\n").replace("\\t", "\t").replace('%20','  ')

def answer(text, sample=True, top_p=1, temperature=0.7):
  '''sample:是否抽样。生成任务,可以设置为True;
  top_p:0-1之间,生成的内容越多样'''
  text = preprocess(text)
  encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=768, return_tensors="pt").to(device) 
  if not sample:
    out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, num_beams=1, length_penalty=0.6)
  else:
    out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=512, do_sample=True, top_p=top_p, temperature=temperature, no_repeat_ngram_size=3)
  out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
  return postprocess(out_text[0])

def clear_session():
    return '', None

def chatyuan_bot(input, history):
    history = history or []
    if len(history) > 5:
       history = history[-5:]

    context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
    print(context)

    input_text = context + "\n用户:" + input + "\n小元:"
    output_text = answer(input_text)
    history.append((input, output_text))
    print(history)
    return history, history

block = gr.Blocks()

with block as demo:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
    """)
    chatbot = gr.Chatbot(label='ChatYuan')
    message = gr.Textbox()
    state = gr.State()
    message.submit(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    with gr.Row():
      clear_history = gr.Button("👋 清除历史对话")
      clear = gr.Button('🧹 清除发送框')
      send = gr.Button("🚀 发送")
      
    send.click(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    clear.click(lambda: None, None, message, queue=False)
    clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)
    

# def ChatYuan(api_key, text_prompt):

#     cl = clueai.Client(api_key,
#                         check_api_key=True)
#     # generate a prediction for a prompt
#     # 需要返回得分的话,指定return_likelihoods="GENERATION"
#     prediction = cl.generate(model_name='ChatYuan-large', prompt=text_prompt)
#     # print the predicted text
#     print('prediction: {}'.format(prediction.generations[0].text))
#     response = prediction.generations[0].text
#     if response == '':
#         response = "很抱歉,我无法回答这个问题"

#     return response
  
# def chatyuan_bot_api(api_key, input, history):
#     history = history or []

#     if len(history) > 5:
#       history = history[-5:]

#     context = "\n".join([f"用户:{input_text}\n小元:{answer_text}" for input_text, answer_text in history])
#     print(context)

#     input_text = context + "\n用户:" + input + "\n小元:"
#     output_text = ChatYuan(api_key, input_text)
#     history.append((input, output_text))
#     print(history)
#     return history, history

block = gr.Blocks()

with block as demo_1:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
    <font size=4>在使用此功能前,你需要有个API key. API key 可以通过这个<a href='https://www.clueai.cn/' target="_blank">平台</a>获取</font>
    """)
    api_key = gr.inputs.Textbox(label="请输入你的api-key(必填)", default="", type='password')
    chatbot = gr.Chatbot(label='ChatYuan')
    message = gr.Textbox()
    state = gr.State()
    message.submit(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    with gr.Row():
      clear_history = gr.Button("👋 清除历史对话")
      clear = gr.Button('🧹 清除发送框')
      send = gr.Button("🚀 发送")

    send.click(chatyuan_bot, inputs=[message, state], outputs=[chatbot, state])
    clear.click(lambda: None, None, message, queue=False)
    clear_history.click(fn=clear_session , inputs=[], outputs=[chatbot, state], queue=False)

block = gr.Blocks()
with block as introduction:
    gr.Markdown("""<h1><center>元语智能——ChatYuan</center></h1>
    
<font size=4>😉ChatYuan: 元语功能型对话大模型
<br>
<br>
👏这个模型可以用于问答、结合上下文做对话、做各种生成任务, 包括创意性写作, 也能回答一些像法律、新冠等领域问题. 它基于PromptCLUE-large结合数亿条功能对话多轮对话数据进一步训练得到.<br>
<br>
👀<a href='https://www.cluebenchmarks.com/clueai.html'>PromptCLUE-large</a>在1000亿token中文语料上预训练, 累计学习1.5万亿中文token, 并且在数百种任务上进行Prompt任务式训练. 针对理解类任务, 如分类、情感分析、抽取等, 可以自定义标签体系; 针对多种生成任务, 可以进行采样自由生成.  <br> 
<br>
🚀<a href='https://www.clueai.cn/chat' target="_blank">在线Demo</a> &nbsp; | &nbsp; <a href='https://modelscope.cn/models/ClueAI/ChatYuan-large/summary' target="_blank">ModelScope</a> &nbsp; | &nbsp; <a href='https://huggingface.co/ClueAI/ChatYuan-large-v1' target="_blank">Huggingface</a> &nbsp; | &nbsp; <a href='https://www.clueai.cn' target="_blank">官网体验场</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/clueai-python#ChatYuan%E5%8A%9F%E8%83%BD%E5%AF%B9%E8%AF%9D' target="_blank">ChatYuan-API</a> &nbsp; | &nbsp; <a href='https://github.com/clue-ai/ChatYuan' target="_blank">Github项目地址</a> &nbsp; | &nbsp; <a href='https://openi.pcl.ac.cn/ChatYuan/ChatYuan/src/branch/main/Fine_tuning_ChatYuan_large_with_pCLUE.ipynb' target="_blank">OpenI免费试用</a> &nbsp;
</font>
    """)


gui = gr.TabbedInterface(interface_list=[introduction,demo, demo_1], tab_names=["相关介绍","开源模型", "API调用"])
gui.launch(quiet=True,show_api=False, share = True)